login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092814
Schmidt's problem sum for r = 4.
6
1, 17, 2593, 990737, 473940001, 261852948017, 166225611652129, 115586046457265681, 85467827222155042849, 66421846251482628852017, 53755021948680412765238593, 44947131400352317819689905201, 38613445585740736549461528111649, 33942058336306457714420306982430001
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Schmidt's Problem
FORMULA
a(n) = sum(k=0..n, binomial(n,k)^4 * binomial(n+k,k)^4 ).
a(n) ~ (1+sqrt(2))^(4*(2n+1))/(2^(15/4)*(Pi*n)^(7/2)). - Vaclav Kotesovec, Nov 04 2012
MATHEMATICA
Table[Sum[Binomial[n, k]^4 Binomial[n+k, k]^4, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 04 2012 *)
a[k_]:= HypergeometricPFQ[{-k, -k, -k, -k, 1+k, 1+k, 1+k, 1+k}, {1, 1, 1, 1, 1, 1, 1}, 1]
Table[ a[k], {k, 0, 20}] (* Gerry Martens, Sep 26 2022 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(n, k)^4*binomial(n+k, k)^4); \\ Joerg Arndt, May 11 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Mar 06 2004
EXTENSIONS
Prepended missing a(0)=1, Joerg Arndt, May 11 2013
STATUS
approved