login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092811
Expansion of g.f. (1-4*x)/(1-8*x).
5
1, 4, 32, 256, 2048, 16384, 131072, 1048576, 8388608, 67108864, 536870912, 4294967296, 34359738368, 274877906944, 2199023255552, 17592186044416, 140737488355328, 1125899906842624, 9007199254740992, 72057594037927936, 576460752303423488, 4611686018427387904
OFFSET
0,2
COMMENTS
4th binomial transform of (1,0,16,0,256,...).
Number of compositions of even natural numbers into n parts <= 7. - Adi Dani, May 28 2011
FORMULA
a(n) = 8^n/2 + 0^n/2.
a(n) = A001045(3n+1) - A001045(3n-1) + 0^n/2.
a(n) = A013731(n-1), n > 0. - R. J. Mathar, Sep 08 2008
a(n) = 4 * 8^(n-1), a(0)=1. - Vincenzo Librandi, Jun 16 2011
a(n) = Sum_{k=0..n} A134309(n,k)*4^k = Sum_{k=0..n} A055372(n,k)*3^k. - Philippe Deléham, Feb 04 2012
E.g.f.: (1 + exp(8*x))/2. - Stefano Spezia, May 29 2024
EXAMPLE
From Adi Dani, May 28 2011: (Start)
a(2)=32: there are 32 compositions of even natural numbers into 2 parts <= 7:
(0,0);
(0,2),(2,0),(1,1);
(0,4),(4,0),(1,3),(3,1),(2,2);
(0,6),(6,0),(1,5),(5,1),(2,4),(4,2),(3,3);
(1,7),(7,1),(2,6),(6,2),(3,5),(5,3),(4,4);
(3,7),(7,3),(4,6),(6,4),(5,5);
(5,7),(7,5),(6,6);
(7,7). (End)
MATHEMATICA
Table[EulerPhi[8^n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Nov 10 2009 *)
PROG
(Magma) [8^n/2+0^n/2: n in [0..20]]; // Vincenzo Librandi, Jun 16 2011
(PARI) a(n)=max(1, 8^n/2) \\ Charles R Greathouse IV, Apr 09 2012
CROSSREFS
Cf. A001045, A013731 (same sequence omitting initial 1), A055372, A134309.
Sequence in context: A317512 A300177 A013731 * A363440 A009509 A036725
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 10 2004
STATUS
approved