login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092813
Schmidt's problem sum for r = 3.
6
1, 9, 433, 36729, 3824001, 450954009, 58160561761, 7989733343097, 1149808762915201, 171540347534028009, 26338900959100106433, 4140153621102790276137, 663592912043903970182289, 108127319237119098011204937, 17868369859451104998973346433, 2989001418301890511076878884729
OFFSET
0,2
COMMENTS
Apparently, the diagonal of 1/((1 - x - y)*(1 - z - t)*(1 - u - w) - x*y*z*t*u*w). - Peter Bala, Jun 30 2023
LINKS
Eric Weisstein's World of Mathematics, Schmidt's Problem
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k)^3 * binomial(n+k,k)^3.
a(n) ~ (1+sqrt(2))^(3*(2*n+1))/(2^(9/4)*(Pi*n)^(5/2)*sqrt(3)). - Vaclav Kotesovec, Nov 04 2012
MATHEMATICA
Table[Sum[Binomial[n, k]^3 Binomial[n+k, k]^3, {k, 0, n}], {n, 0, 20}] (*Harvey P. Dale, Apr 26 2011 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(n, k)^3*binomial(n+k, k)^3); \\ Joerg Arndt, May 11 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Mar 06 2004
EXTENSIONS
Prepended missing a(0)=1, Joerg Arndt, May 11 2013
STATUS
approved