|
|
A092816
|
|
Number of Sophie Germain primes less than 10^n.
|
|
8
|
|
|
3, 10, 37, 190, 1171, 7746, 56032, 423140, 3308859, 26569515, 218116524, 1822848478, 15462601989, 132822315652
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Hardy-Littlewood conjecture: Number of Sophie Germain primes less than n ~ 2*C2*n/(log(n))^2, where C2 = 0.6601618158... is the twin prime constant (see A005597). The truth of the above conjecture would imply that there are an infinite number of Sophie Germain primes (which is also conjectured). - Robert G. Wilson v, Jan 31 2013
|
|
REFERENCES
|
P. Ribenboim, The Little Book of Big Primes, Springer-Verlag, New York, 1991, p. 228.
|
|
LINKS
|
Table of n, a(n) for n=1..14.
C. K. Caldwell, An amazing prime heuristic, Table 6.
Eric Weisstein's World of Mathematics, Sophie Germain Prime
|
|
CROSSREFS
|
Cf. A005384, A156874, A182265.
Sequence in context: A250307 A289990 A123636 * A078109 A149045 A149046
Adjacent sequences: A092813 A092814 A092815 * A092817 A092818 A092819
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Eric W. Weisstein, Mar 06 2004
|
|
EXTENSIONS
|
a(10) computed by Eric W. Weisstein, Nov 02 2005
a(11)-a(12) from Donovan Johnson, Jun 19 2010
a(13)-a(14) from Giovanni Resta, Sep 04 2017
|
|
STATUS
|
approved
|
|
|
|