

A005597


Decimal expansion of the twin prime constant C_2 = Product_{ p prime >= 3 } (11/(p1)^2).
(Formerly M4056)


16



6, 6, 0, 1, 6, 1, 8, 1, 5, 8, 4, 6, 8, 6, 9, 5, 7, 3, 9, 2, 7, 8, 1, 2, 1, 1, 0, 0, 1, 4, 5, 5, 5, 7, 7, 8, 4, 3, 2, 6, 2, 3, 3, 6, 0, 2, 8, 4, 7, 3, 3, 4, 1, 3, 3, 1, 9, 4, 4, 8, 4, 2, 3, 3, 3, 5, 4, 0, 5, 6, 4, 2, 3, 0, 4, 4, 9, 5, 2, 7, 7, 1, 4, 3, 7, 6, 0, 0, 3, 1, 4, 1, 3, 8, 3, 9, 8, 6, 7, 9, 1, 1, 7, 7, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

C_2 = Product_{ p prime > 2} (p * (p2) / (p1)^2) is the 2tuple case of the HardyLittlewood prime ktuple constant (part of First HL Conjecture): C_k = Product_{ p prime > k} (p^(k1) * (pk) / (p1)^k).
Although C_2 is commonly called the twin prime constant, it is actually the prime 2tuple constant (prime pair constant) which is relevant to prime pairs (p, p+2m), m >= 1.
The HardyLittlewood Asymptotic Conjecture for Pi_2m(n), the number of prime pairs (p, p+2m), m >= 1, with p <= n, claims that asymptotically Pi_2m(n) ~ C_2(2m) * Li_2(n), where Li_2(n) = Integral_{2, n} (dx/log^2(x)) and C_2(2m) = 2 * C_2 * Product_{p prime > 2, p  m} (p1)/(p2), which gives: C_2(2) = 2 * C_2 as the prime pair (p, p+2) constant, C_2(4) = 2 * C_2 as the prime pair (p, p+4) constant, C_2(6) = 2* (2/1) * C_2 as the prime pair (p, p+6) constant, C_2(8) = 2 * C_2 as the prime pair (p, p+8) constant, C_2(10) = 2 * (4/3) * C_2 as the prime pair (p, p+10) constant, C_2(12) = 2 * (2/1) * C_2 as the prime pair (p, p+12) constant, C_2(14) = 2 * (6/5) * C_2 as the prime pair (p, p+14) constant, C_2(16) = 2 * C_2 as the prime pair (p, p+16) constant, ... And, for i >= 1, C_2(2^i) = 2 * C_2 as the prime pair (p, p+2^i) constant.
C_2 also occurs as part of other HardyLittlewood conjectures related to prime pairs, e.g., the HardyLittlewood conjecture concerning the distribution of the Sophie Germain primes (A156874), which happens to be primes p s.t. (p, 2p+1) is a prime pair.
Another constant related to the twin primes is Viggo Brun's constant B (sometimes also called the twin primes Viggo Brun's constant B_2) A065421, where B_2 = Sum (1/p + 1/q) as (p,q) runs through the twin primes.
Reciprocal of the SelbergDelange constant A167864. See A167864 for additional comments and references.  Jonathan Sondow, Nov 18 2009
C_2 = Product_{prime p>2} (p2)p/(p1)^2 is an analog for primes of Wallis' product 2/Pi = Product_{n=1 to oo} (2n1)(2n+1)/(2n)^2.  Jonathan Sondow, Nov 18 2009
One can compute a cubic variant, product_{primes >2} (11/(p1)^3) = 0.855392... = (2/3) * 0.6601618...* 1.943596... by multiplying this constant with 2/3 and A082695.  R. J. Mathar, Apr 03 2011


REFERENCES

R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 11.
S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 8493
Philippe Flajolet and Ilan Vardi, Zeta function Expansions of Classical constants, Feb. 18, 1996
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, ch. 22.20.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Harry J. Smith, Table of n, a(n) for n=0..1001
Folkmar Bornemann, PRIMES Is in P: Breakthrough for "Everyman", Notices Amer. Math. Soc., 50(5) (May 2003), p. 549.
C. K. Caldwell, The Prime Glossary, twin prime constant
H. Cohen, Highprecision calculation of HardyLittlewood constants, 1998.  From N. J. A. Sloane, Jan 26 2013
S. R. Finch, Mathematical Constants, Errata and Addenda, Sec. 2.1. [From Jonathan Sondow, Nov 18 2009]
Ph. Flajolet and I. Vardi, Zeta function expansions of some classical constants
D. A. Goldston, Julian Ziegler Hunts, Timothy Ngotiaoco, The Tail of the Singular Series for the Prime Pair and Goldbach Problems, arXiv:1409.2151.
R. J. Mathar, HardyLittlewood constants embedded into infinite products over all positive integers, arXiv:0903.2514 constant T_1^(2).
G. Niklasch, Some number theoretical constants: 1000digit values [Cached copy]
G. Niklasch, Twin primes constant
Simon Plouffe, The twin primes constant
Simon Plouffe, Plouffe's Inverter, The twin primes constant
Pascal Sebah (pascal_sebah(AT)dsfr.com), Numbers, constants and computation (gives 5000 digits)
Eric Weisstein's World of Mathematics, Twin Primes Constant
Eric Weisstein's World of Mathematics, Twin Prime Conjecture
Eric Weisstein's World of Mathematics, kTuple Conjecture
Eric Weisstein's World of Mathematics, Prime Constellation
J. W. Wrench, Jr., Evaluation of Artin's constant and the twinprime constant, Math. Comp., 15 (1961), 396398.


FORMULA

Equals prod(k>=2, (zeta(k)*(11/2^k))^(sum(d/k, mu(d)*2^(k/d))/k)).  Benoit Cloitre, Aug 06 2003
Equals 1/A167864.  Jonathan Sondow, Nov 18 2009


EXAMPLE

0.6601618158468695739278121100145557784326233602847334133194484233354056423...


MATHEMATICA

s[n_] := (1/n)*N[ Sum[ MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], 160]; C2 = (175/256)*Product[ (Zeta[n]*(1  2^(n))*(1  3^(n))*(1  5^(n))*(1  7^(n)))^(s[n]), {n, 2, 160}]; RealDigits[C2][[1]][[1 ;; 105]] (* JeanFrançois Alcover, Oct 15 2012, after PARI *)


PROG

(PARI) ?\p1000 ? 175/256*prod(k=2, 500, (zeta(k)*(11/2^k)*(11/3^k)*(11/5^k)*(11/7^k))^(sumdiv(k, d, moebius(d)*2^(k/d))/k))


CROSSREFS

Cf. A065645 (continued fraction), A065646 (denominators of convergents to twin prime constant), A065647 (numerators of convergents to twin prime constant), A062270, A062271, A114907, A065418 (C_3).
Sequence in context: A002892 A055667 A155742 * A197013 A081825 A212708
Adjacent sequences: A005594 A005595 A005596 * A005598 A005599 A005600


KEYWORD

cons,nonn,nice


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Vladeta Jovovic, Nov 08 2001
Commented and edited by Daniel Forgues, Jul 28 2009, Aug 04 2009, Aug 12 2009
PARI code removed by D. S. McNeil, Dec 26 2010


STATUS

approved



