OFFSET
0,1
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008, page 21.
FORMULA
Integral_{0..inf} x*BesselI_0(x)^2*BesselK_0(x)^3.
Equals 4(7 - 4*sqrt(3)) EllipticK(1 - 32/(16 + 7*sqrt(3) - sqrt(15))) EllipticK(1 - 32/(16 + 7*sqrt(3) + sqrt(15))).
EXAMPLE
0.660344869018672357837266831705994263854241991696873858300803587553894...
MATHEMATICA
t[5, 1] = NIntegrate[x*BesselI[0, x]^2*BesselK[0, x]^3, {x, 0, Infinity}, WorkingPrecision -> 105]; RealDigits[t[5, 1]][[1]]
(* or: *)
t[5, 1] = 4(7 - 4*Sqrt[3]) EllipticK[1 - 32/(16 + 7*Sqrt[3] - Sqrt[15])] EllipticK[1 - 32/(16 + 7*Sqrt[3] + Sqrt[15])]; RealDigits[t[5, 1], 10, 105][[1]]
RealDigits[EllipticK[(16 - 7 Sqrt[3] - Sqrt[15])/32] EllipticK[(16 - 7 Sqrt[3] + Sqrt[15])/32]/4, 10, 105][[1]] (* Jan Mangaldan, Jan 06 2017 *)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Jean-François Alcover, Jun 06 2016
STATUS
approved