login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A273989
Decimal expansion of the odd Bessel moment t(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
2
6, 6, 0, 3, 4, 4, 8, 6, 9, 0, 1, 8, 6, 7, 2, 3, 5, 7, 8, 3, 7, 2, 6, 6, 8, 3, 1, 7, 0, 5, 9, 9, 4, 2, 6, 3, 8, 5, 4, 2, 4, 1, 9, 9, 1, 6, 9, 6, 8, 7, 3, 8, 5, 8, 3, 0, 0, 8, 0, 3, 5, 8, 7, 5, 5, 3, 8, 9, 4, 9, 5, 8, 6, 8, 3, 7, 9, 9, 4, 4, 5, 4, 1, 0, 9, 8, 1, 0, 7, 2, 0, 1, 2, 1, 7, 5, 3, 2, 7, 6, 8, 4, 2, 4, 3
OFFSET
0,1
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008, page 21.
FORMULA
Integral_{0..inf} x*BesselI_0(x)^2*BesselK_0(x)^3.
Equals 4(7 - 4*sqrt(3)) EllipticK(1 - 32/(16 + 7*sqrt(3) - sqrt(15))) EllipticK(1 - 32/(16 + 7*sqrt(3) + sqrt(15))).
EXAMPLE
0.660344869018672357837266831705994263854241991696873858300803587553894...
MATHEMATICA
t[5, 1] = NIntegrate[x*BesselI[0, x]^2*BesselK[0, x]^3, {x, 0, Infinity}, WorkingPrecision -> 105]; RealDigits[t[5, 1]][[1]]
(* or: *)
t[5, 1] = 4(7 - 4*Sqrt[3]) EllipticK[1 - 32/(16 + 7*Sqrt[3] - Sqrt[15])] EllipticK[1 - 32/(16 + 7*Sqrt[3] + Sqrt[15])]; RealDigits[t[5, 1], 10, 105][[1]]
RealDigits[EllipticK[(16 - 7 Sqrt[3] - Sqrt[15])/32] EllipticK[(16 - 7 Sqrt[3] + Sqrt[15])/32]/4, 10, 105][[1]] (* Jan Mangaldan, Jan 06 2017 *)
CROSSREFS
Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)), A273986 (s(5,5)), A273990 (t(5,3)), A273991 (t(5,5)).
Sequence in context: A364406 A005597 A281056 * A197013 A329092 A081825
KEYWORD
cons,nonn
AUTHOR
STATUS
approved