login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273992
Numbers whose sum of anti-divisors is equal to the sum of its unitary divisors.
0
11, 22, 33, 65, 82, 140, 218, 228, 483, 537, 616, 1184, 2889, 6430, 10216, 15849, 21541, 59620, 112590, 117818, 130356, 483153, 3028671, 3589646, 7231219, 8515767, 13050345, 36494625, 44498344, 50414595, 217728002, 459644211, 519061576, 1217532421, 1573368218
OFFSET
1,1
EXAMPLE
Sum of anti-divisors of 11 is 12. Unitary divisors of 11 are 1, 11 and their sum is 12.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, j, k, n;
for n from 1 to q do k:=0; j:=n;
while j mod 2 <> 1 do k:=k+1; j:=j/2; od;
a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
c:=ifactors(n)[2]; b:=mul(c[j][1]^c[j][2]+1, j=1..nops(c));
if a=b then print(n); fi; od; end: P(10^6);
MATHEMATICA
Select[Range[5000], Function[n, Total[Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]] == Plus @@ Select[Divisors@ n, GCD[#, n/#] == 1 &]]] (* Michael De Vlieger, Jun 06 2016, after Robert G. Wilson v at A034448 and Harvey P. Dale at A066272 *)
PROG
(PARI) sud(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d));
sad(n) = my(k); if(n>1, k=valuation(n, 2); sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2, 0);
isok(n) = sad(n) == sud(n); \\ Michel Marcus, Jun 12 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jun 06 2016
EXTENSIONS
a(23)-a(26) from Michel Marcus, Jun 12 2016
a(27)-a(35) from Amiram Eldar, Jul 12 2022
STATUS
approved