login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A273990
Decimal expansion of the odd Bessel moment t(5,3) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
2
2, 5, 2, 2, 5, 3, 9, 4, 4, 8, 9, 7, 8, 4, 1, 9, 6, 5, 9, 9, 4, 5, 0, 9, 6, 1, 2, 5, 5, 5, 0, 9, 0, 4, 0, 8, 7, 7, 5, 0, 6, 8, 4, 5, 0, 7, 5, 5, 9, 7, 0, 0, 9, 9, 9, 2, 0, 6, 5, 9, 3, 0, 9, 4, 5, 2, 8, 9, 7, 1, 0, 2, 0, 7, 4, 1, 9, 8, 6, 0, 5, 9, 0, 8, 1, 5, 6, 3, 5, 4, 9, 5, 9, 6, 5, 1, 7, 4, 1, 1, 9, 2, 7, 9
OFFSET
0,1
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008, page 21.
FORMULA
Integral_{0..inf} x*BesselI_0(x)^2*BesselK_0(x)^3.
EXAMPLE
0.252253944897841965994509612555090408775068450755970099920659309452897...
MATHEMATICA
t[5, 3] = NIntegrate[x^3*BesselI[0, x]^2*BesselK[0, x]^3, {x, 0, Infinity}, WorkingPrecision -> 104];
RealDigits[t[5, 3]][[1]]
(* or: *)
K[k_] := EllipticK[k^2/(-1+k^2)]/Sqrt[1-k^2];
D0[y_] := (4*y*K[Sqrt[((1-3*y)*(1+y)^3)/((1+3*y)*(1-y)^3)]])/Sqrt[(1+3*y)* (1-y)^3];
t[5, 3] = NIntegrate[4y^2*(1-2y^2+4y^4)*D0[y]/(1-4y^2)^(5/2), {y, 0, 1/3}, WorkingPrecision -> 104];
RealDigits[t[5, 3]][[1]]
CROSSREFS
Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)), A273986 (s(5,5)), A273989 (t(5,1)), A273991 (t(5,5)).
Sequence in context: A171937 A065291 A065267 * A216022 A100955 A049413
KEYWORD
nonn,cons
AUTHOR
STATUS
approved