OFFSET
0,3
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008, page 21.
FORMULA
C = Pi/16 (1 - 1/sqrt(5)) (1+2 Sum_{n>=1} exp(-n^2 Pi sqrt(15)))^4.
Equals Pi/16 (1 - 1/sqrt(5)) theta_3(0, exp(-sqrt(15)*Pi))^4, where theta_3 is the elliptic theta_3 function.
Also equals s(5,1)/Pi^2 (where the Bessel moment s(5,1) is Integral_{0..inf} x I_0(x) K_0(x)^4 dx), a conjectural equality checked by the authors to 1200 decimal places.
EXAMPLE
0.10854386983368497104035275675922632616425672443479475045864659238...
MATHEMATICA
c = (Pi/16) (1 - 1/Sqrt[5]) EllipticTheta[3, 0, Exp[-Sqrt[15] Pi]]^4;
RealDigits[c, 10, 100][[1]]
RealDigits[((5 - Sqrt[5]) EllipticK[(16 - 7 Sqrt[3] - Sqrt[15])/32]^2)/(20 Pi), 10, 100][[1]] (* Jan Mangaldan, Jan 04 2017 *)
RealDigits[(Gamma[1/15] Gamma[2/15] Gamma[4/15] Gamma[8/15])/(240 Sqrt[5] Pi^2), 10, 100][[1]] (* Jan Mangaldan, Jan 04 2017 *)
PROG
(PARI) th(x)=suminf(y=1, x^y^2)
(1-1/sqrt(5))*(1+2*th(exp(-sqrt(15)*Pi)))^4*Pi/16 \\ Charles R Greathouse IV, Jun 06 2016
(PARI) K(x)=Pi/2/agm(1, sqrt(1-x))
((5 - sqrt(5))*K((16 - 7*sqrt(3) - sqrt(15))/32)^2)/20/Pi \\ Charles R Greathouse IV, Aug 02 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Jun 05 2016
STATUS
approved