The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273984 Decimal expansion of the odd Bessel moment s(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments). 5
 1, 0, 7, 1, 2, 8, 5, 0, 5, 5, 4, 2, 1, 8, 0, 7, 6, 5, 8, 5, 1, 8, 7, 1, 1, 9, 7, 8, 0, 3, 0, 8, 1, 7, 1, 6, 0, 7, 6, 3, 1, 7, 9, 7, 7, 7, 1, 6, 7, 0, 5, 6, 2, 1, 7, 0, 2, 4, 6, 9, 3, 6, 5, 9, 9, 5, 0, 1, 8, 3, 8, 7, 1, 4, 9, 3, 0, 6, 4, 0, 8, 7, 9, 9, 6, 2, 7, 2, 3, 0, 0, 0, 9, 3, 7, 4, 3, 0, 9, 6, 7, 6, 6, 9, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008, page 21. FORMULA s(5,1) = Integral_{0..inf} x*BesselI_0(x)*BesselK_0(x)^4 dx. Equals Pi^2 C (conjectural, where C is A273959). EXAMPLE 1.07128505542180765851871197803081716076317977716705621702469365995... MATHEMATICA s[5, 1] = NIntegrate[x*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 105]; RealDigits[s[5, 1]][[1]] CROSSREFS Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273985 (s(5,3)), A273986 (s(5,5)). Sequence in context: A010144 A195409 A318353 * A119506 A304149 A305489 Adjacent sequences:  A273981 A273982 A273983 * A273985 A273986 A273987 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Jun 06 2016 EXTENSIONS Offset corrected by Rick L. Shepherd, Jun 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 22:46 EDT 2021. Contains 347651 sequences. (Running on oeis4.)