login
A273984
Decimal expansion of the odd Bessel moment s(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
5
1, 0, 7, 1, 2, 8, 5, 0, 5, 5, 4, 2, 1, 8, 0, 7, 6, 5, 8, 5, 1, 8, 7, 1, 1, 9, 7, 8, 0, 3, 0, 8, 1, 7, 1, 6, 0, 7, 6, 3, 1, 7, 9, 7, 7, 7, 1, 6, 7, 0, 5, 6, 2, 1, 7, 0, 2, 4, 6, 9, 3, 6, 5, 9, 9, 5, 0, 1, 8, 3, 8, 7, 1, 4, 9, 3, 0, 6, 4, 0, 8, 7, 9, 9, 6, 2, 7, 2, 3, 0, 0, 0, 9, 3, 7, 4, 3, 0, 9, 6, 7, 6, 6, 9, 9
OFFSET
1,3
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008, page 21.
FORMULA
s(5,1) = Integral_{0..inf} x*BesselI_0(x)*BesselK_0(x)^4 dx.
Equals Pi^2 C (conjectural, where C is A273959).
EXAMPLE
1.07128505542180765851871197803081716076317977716705621702469365995...
MATHEMATICA
s[5, 1] = NIntegrate[x*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 105];
RealDigits[s[5, 1]][[1]]
PROG
(PARI) intnumosc(x=0, x*besseli(0, x)*besselk(0, x)^4, Pi) \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273985 (s(5,3)), A273986 (s(5,5)).
Sequence in context: A195409 A318353 A354639 * A119506 A304149 A305489
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
Offset corrected by Rick L. Shepherd, Jun 07 2016
STATUS
approved