login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273984
Decimal expansion of the odd Bessel moment s(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
5
1, 0, 7, 1, 2, 8, 5, 0, 5, 5, 4, 2, 1, 8, 0, 7, 6, 5, 8, 5, 1, 8, 7, 1, 1, 9, 7, 8, 0, 3, 0, 8, 1, 7, 1, 6, 0, 7, 6, 3, 1, 7, 9, 7, 7, 7, 1, 6, 7, 0, 5, 6, 2, 1, 7, 0, 2, 4, 6, 9, 3, 6, 5, 9, 9, 5, 0, 1, 8, 3, 8, 7, 1, 4, 9, 3, 0, 6, 4, 0, 8, 7, 9, 9, 6, 2, 7, 2, 3, 0, 0, 0, 9, 3, 7, 4, 3, 0, 9, 6, 7, 6, 6, 9, 9
OFFSET
1,3
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008, page 21.
FORMULA
s(5,1) = Integral_{0..inf} x*BesselI_0(x)*BesselK_0(x)^4 dx.
Equals Pi^2 C (conjectural, where C is A273959).
EXAMPLE
1.07128505542180765851871197803081716076317977716705621702469365995...
MATHEMATICA
s[5, 1] = NIntegrate[x*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 105];
RealDigits[s[5, 1]][[1]]
PROG
(PARI) intnumosc(x=0, x*besseli(0, x)*besselk(0, x)^4, Pi) \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273985 (s(5,3)), A273986 (s(5,5)).
Sequence in context: A195409 A318353 A354639 * A119506 A304149 A305489
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
Offset corrected by Rick L. Shepherd, Jun 07 2016
STATUS
approved