login
A304149
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 1, 2, 3 or 6 king-move adjacent elements, with upper left element zero.
8
0, 1, 1, 1, 7, 1, 2, 14, 14, 2, 3, 33, 18, 33, 3, 5, 70, 25, 25, 70, 5, 8, 157, 113, 61, 113, 157, 8, 13, 346, 238, 157, 157, 238, 346, 13, 21, 769, 359, 117, 1198, 117, 359, 769, 21, 34, 1710, 1309, 244, 3484, 3484, 244, 1309, 1710, 34, 55, 3813, 3091, 936, 5336, 13152
OFFSET
1,5
COMMENTS
Table starts
..0....1....1...2.....3......5......8.......13........21........34.........55
..1....7...14..33....70....157....346......769......1710......3813.......8514
..1...14...18..25...113....238....359.....1309......3091......5173......15475
..2...33...25..61...157....117....244......936.......733......1513.......5788
..3...70..113.157..1198...3484...5336....24401.....90422....181207.....546435
..5..157..238.117..3484..13152..12582...139840....774023...1302357....5969791
..8..346..359.244..5336..12582...6492...218516....748819....579549....8291908
.13..769.1309.936.24401.139840.218516..1429403..12033436..34502082..116115677
.21.1710.3091.733.90422.774023.748819.12033436.180869894.471888374.2046852451
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 14] for n>16
k=4: [order 17] for n>22
k=5: [order 93] for n>96
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..0..1..0. .0..1..1..0. .0..1..0..1. .0..1..0..0
..1..0..1..1. .1..1..0..1. .1..0..0..1. .1..1..0..0. .1..0..1..1
..1..1..0..1. .1..1..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1
..1..0..1..1. .0..1..1..1. .0..1..1..1. .1..0..1..1. .1..0..0..1
..0..1..1..0. .0..0..1..0. .0..0..1..0. .0..0..1..0. .0..1..1..0
CROSSREFS
Column 1 is A000045(n-1).
Sequence in context: A354639 A273984 A119506 * A305489 A305089 A316740
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 07 2018
STATUS
approved