login
A316740
T(n,k) = Number of n X k 0..1 arrays with every element unequal to 1, 2, 3, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 7, 1, 2, 14, 14, 2, 3, 33, 23, 33, 3, 5, 70, 36, 36, 70, 5, 8, 157, 210, 95, 210, 157, 8, 13, 346, 509, 410, 410, 509, 346, 13, 21, 769, 1219, 392, 4956, 392, 1219, 769, 21, 34, 1710, 4537, 1124, 25047, 25047, 1124, 4537, 1710, 34, 55, 3813, 12446, 3964, 75856
OFFSET
1,5
COMMENTS
Table starts
..0....1.....1....2.......3........5.........8..........13...........21
..1....7....14...33......70......157.......346.........769.........1710
..1...14....23...36.....210......509......1219........4537........12446
..2...33....36...95.....410......392......1124........3964.........5343
..3...70...210..410....4956....25047.....75856......491644......2699059
..5..157...509..392...25047...144106....625739.....8072260.....60509347
..8..346..1219.1124...75856...625739...1906293....44561267....422993842
.13..769..4537.3964..491644..8072260..44561267..1342645923..23603784309
.21.1710.12446.5343.2699059.60509347.422993842.23603784309.632741511767
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2);
k=2: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3) -6*a(n-4) -4*a(n-5) for n > 6;
k=3: [order 14] for n > 16;
k=4: [order 19] for n > 24;
k=5: [order 93] for n > 97;
EXAMPLE
Some solutions for n=5, k=4
..0..1..1..0. .0..1..1..1. .0..1..1..0. .0..1..0..1. .0..1..1..0
..0..1..0..0. .1..1..0..1. .1..1..1..1. .1..1..0..0. .0..1..0..0
..0..0..0..0. .1..0..1..1. .1..0..0..1. .1..1..1..1. .0..0..0..0
..0..1..1..0. .0..1..1..1. .1..1..1..1. .1..0..1..1. .0..1..1..0
..1..0..0..1. .0..1..1..0. .0..1..1..0. .1..1..1..0. .0..1..0..0
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A304143.
Sequence in context: A304149 A305489 A305089 * A304019 A305367 A304959
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 11 2018
STATUS
approved