

A244854


Decimal expansion of Pi^2/32.


7



3, 0, 8, 4, 2, 5, 1, 3, 7, 5, 3, 4, 0, 4, 2, 4, 5, 6, 8, 3, 8, 5, 7, 7, 8, 4, 3, 7, 4, 6, 1, 2, 9, 7, 2, 2, 9, 7, 8, 5, 5, 3, 1, 0, 6, 4, 7, 6, 2, 7, 4, 7, 0, 7, 0, 7, 5, 4, 1, 7, 1, 6, 8, 0, 0, 6, 8, 7, 6, 4, 0, 0, 7, 0, 0, 6, 0, 0, 1, 6, 3, 8, 4, 3, 8, 0, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Probability that a point selected uniformly at random from the unit 4cube is in the unit 4sphere.
Let S(n) = 1  1/3 + 1/5  ... + ((1)^(n1))/(2n1). Then Sum{n >=1} ((1)^(n1))*S(n) /(2n+1) = Pi^2 /32. The convergence is very slow.  Michel Lagneau, Feb 27 2015


LINKS

Table of n, a(n) for n=0..86.


FORMULA

Equals Integral_{0..infinity} x^2*BesselK(0, x)^2 dx.  JeanFrançois Alcover, Apr 15 2015
Equals Integral_{x=0..1} arctan(x)/(1+x^2) dx.  Amiram Eldar, Aug 09 2020


EXAMPLE

Choose 1 <= w, x, y, z <= 1 uniformly at random. Then this constant is the probability that w^2 + x^2 + y^2 + z^2 <= 1.


MAPLE

Digits:=100; evalf(Pi^2/32); # Wesley Ivan Hurt, Feb 27 2015


MATHEMATICA

RealDigits[Pi^2/32, 10, 120][[1]] (* Harvey P. Dale, Jul 13 2014 *)


PROG

(PARI) Pi^2/32


CROSSREFS

Cf. A003881 (2dimensional analog), A019673 (3dimensional analog).
Sequence in context: A317300 A007391 A247668 * A144807 A157957 A201577
Adjacent sequences: A244851 A244852 A244853 * A244855 A244856 A244857


KEYWORD

nonn,cons


AUTHOR

Charles R Greathouse IV, Jul 07 2014


STATUS

approved



