login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273986
Decimal expansion of the odd Bessel moment s(5,5) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
5
0, 5, 4, 5, 1, 4, 2, 5, 3, 1, 3, 2, 7, 6, 1, 8, 8, 0, 3, 6, 3, 0, 3, 3, 9, 1, 9, 8, 0, 2, 0, 0, 9, 5, 9, 6, 8, 7, 7, 6, 1, 4, 3, 4, 9, 5, 4, 4, 5, 7, 5, 9, 1, 3, 6, 4, 9, 9, 4, 0, 2, 6, 4, 6, 3, 4, 0, 8, 5, 7, 9, 9, 3, 6, 3, 3, 0, 3, 5, 4, 6, 1, 0, 5, 5, 1, 5, 7, 3, 8, 2, 8, 2, 4, 7, 0, 9, 0, 6, 1, 3, 3, 1, 6
OFFSET
0,2
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891, page 21.
FORMULA
s(5,5) = Integral_{0..inf} x^5*BesselI_0(x)*BesselK_0(x)^4 dx.
Equals Pi^2 (4/15)^3 (43 C - 19/(40 C)) (conjectural, where C is A273959).
EXAMPLE
0.054514253132761880363033919802009596877614349544575913649940264634...
MATHEMATICA
s[5, 5] = NIntegrate[x^5*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 103];
Join[{0}, RealDigits[s[5, 5]][[1]]]
CROSSREFS
Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)).
Sequence in context: A019117 A204372 A279918 * A246729 A337029 A293557
KEYWORD
nonn,cons
AUTHOR
STATUS
approved