login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204372
Expansion of phi(x)^2 * (5 * phi(-x)^8 + 64 * x * psi(-x)^8) in powers of x where phi(), psi() are Ramanujan theta functions.
2
5, 4, 4, -320, 4, 2504, -320, -9600, 4, 25924, 2504, -58560, -320, 114248, -9600, -200320, 4, 334088, 25924, -521280, 2504, 768000, -58560, -1119360, -320, 1565004, 114248, -2099840, -9600, 2829128, -200320, -3694080, 4, 4684800
OFFSET
0,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q)^4 * eta(q^2)^2 * (5 * eta(q)^8 / eta(q^4)^4 + 64 * q * eta(q^4)^4 ) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (4*t)) = 2048 (t/i)^5 g(t) where q = exp(2*Pi*i*t) and g(t) is the g.f. for A050468.
G.f.: 5 + 4 * Sum_{k>0} (-1)^(k-1) * (2*k - 1)^4 * x^(2*k - 1) / (1 - x^(2*k - 1)).
a(n) = 4 * A050456(n) if n>0.
EXAMPLE
G.f. = 5 + 4*x + 4*x^2 - 320*x^3 + 4*x^4 + 2504*x^5 - 320*x^6 - 9600*x^7 + 4*x^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2 (5 EllipticTheta[ 4, 0, q]^8 + 4 EllipticTheta[ 2, Pi/4, q^(1/2)]^8), {q, 0, n}]; (* Michael Somos, May 03 2015 *)
a[ n_] := If[ n < 1, 5 Boole[n == 0], 4 DivisorSum[ n, #^4 KroneckerSymbol[ -4, #] &]]; (* Michael Somos, May 04 2015 *)
PROG
(PARI) {a(n) = if( n<1, 5 * (n==0), 4 * sumdiv( n, d, d^4 * kronecker( -4, d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^2 + A)^2 * (5 * eta(x + A)^8 / eta(x^4 + A)^4 + 64 * x * eta(x^4 + A)^4 ), n))};
(Magma) A := Basis( ModularForms( Gamma1(4), 5), 34); 5*A[1] + 4*A[2] + 4*A[3]; /* Michael Somos, May 04 2015 */
CROSSREFS
Sequence in context: A071419 A291069 A019117 * A279918 A273986 A246729
KEYWORD
sign
AUTHOR
Michael Somos, Jan 14 2012
STATUS
approved