This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279918 Expansion of f(-x^2)^7 / (f(x) * f(-x^8)^2) in powers of x where f() is a Ramanujan theta function. 1
 1, -1, -5, 4, 5, 0, 11, -15, -18, 3, -10, 29, 10, 11, 37, -51, -16, -30, -65, 62, 53, 22, 50, -61, -52, -4, -81, 120, 62, 0, 124, -182, -85, -43, -157, 171, 123, 60, 202, -198, -174, 0, -190, 301, 117, 54, 278, -375, -171, -153, -399, 370, 300, 108, 408, -451 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of chi(x)^3 * chi(x^2)^2 * f(-x)^4 in powers of x where chi(), f() are Ramanujan theta functions. Expansion of phi(-x^2)^4 * chi(x^2)^2 / chi(x) in powers of x where chi(), phi() are Ramanujan theta functions. Expansion of q^(-1/8) * eta(q) * eta(q^2)^4 * eta(q^4) / eta(q^8)^2 in powers of q. Euler transform of period 8 sequence [ -1, -5, -1, -6, -1, -5, -1, -4, ...]. a(n) = A279955(2*n). EXAMPLE G.f. = 1 - x - 5*x^2 + 4*x^3 + 5*x^4 + 11*x^6 - 15*x^7 - 18*x^8 + ... G.f. = q^-1 - q^7 - 5*q^15 + 4*q^23 + 5*q^31 + 11*q^47 - 15*q^55 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^3 QPochhammer[ -x^2, x^4]^2 QPochhammer[ x]^4, {x, 0, n}]; a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^2]^4 QPochhammer[ -x^2, x^4]^2 QPochhammer[ x, -x], {x, 0, n}]; PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A)^4 * eta(x^4 + A) / eta(x^8 + A)^2, n))}; (PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q)*eta(q^2)^4*eta(q^4)/eta(q^8)^2)} \\ Altug Alkan, Mar 21 2018 CROSSREFS Cf. A279955. Sequence in context: A291069 A019117 A204372 * A273986 A246729 A293557 Adjacent sequences:  A279915 A279916 A279917 * A279919 A279920 A279921 KEYWORD sign AUTHOR Michael Somos, Dec 23 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 09:05 EST 2019. Contains 329995 sequences. (Running on oeis4.)