login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050456 a(n) = Sum_{d|n, d==1 mod 4} d^4 - Sum_{d|n, d==3 mod 4} d^4. 6
1, 1, -80, 1, 626, -80, -2400, 1, 6481, 626, -14640, -80, 28562, -2400, -50080, 1, 83522, 6481, -130320, 626, 192000, -14640, -279840, -80, 391251, 28562, -524960, -2400, 707282, -50080, -923520, 1, 1171200, 83522, -1502400, 6481, 1874162, -130320 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Multiplicative because it is the Inverse Möbius transform of [1 0 -3^4 0 5^4 0 -7^4 ...], which is multiplicative. - Christian G. Bower, May 18 2005

Called E_4(n) by Hardy.

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 120.

G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Chelsea Publishing Company, New York 1959, p. 135 section 9.3. MR0106147 (21 #4881)

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).

K. Ono, S. Robins and P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94. Case k=10.

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Index entries for sequences mentioned by Glaisher

FORMULA

Expansion of ( eta(q)^4 * eta(q^2)^2 * (5 * eta(q)^8 / eta(q^4)^4 + 64 * q * eta(q^4)^4 ) - 5) / 4 in powers of q. - Michael Somos, Jan 14 2012

Expansion of (phi(x)^2 * (5 * phi(-x)^8 + 64 * x * psi(-x)^8) - 5) / 4 in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jan 14 2012

a(n) is multiplicative with a(2^e) = 1, a(p^e) = ((p^4)^(e+1) - 1) / (p^4 - 1) if p == 1 (mod 4), a(p^e) = (1 - (-p^4)^(e+1)) / (1 + p^4) if p == 3 (mod 4). - Michael Somos, Jan 14 2012

G.f.: Sum_{k>0} (-1)^(k-1) * (2*k - 1)^4 * x^(2*k - 1) / (1 - x^(2*k - 1)).

a(n) = Sum_{d|n} Chi(d)*d^4, with Chi(n) the second Dirichlet character modulo 4, i.e., Chi(1) = 1 and Chi(3) = -1. See the Ono et al ref. case k=10. - Wolfdieter Lang, Jan 13 2017

EXAMPLE

G.f. = x + x^2 - 80*x^3 + x^4 + 626*x^5 - 80*x^6 - 2400*x^7 + x^8 + 6481*x^9 + ...

MATHEMATICA

e[r_, n_] := Plus@@(Select[Divisors[n], Mod[#, 4] == 1 &]^r) -Plus@@(Select[Divisors[n], Mod[#, 4] == 3 &]^r); e[4, #] &/@Range[38] (* Ant King, Nov 10 2012 *)

PROG

(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, (d%2) * (-1)^((d-1)/2) * d^4))}; /* Michael Somos, Sep 12 2005 */

(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, d^4 * kronecker( -4, d)))};

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A)^4 * eta(x^2 + A)^2 * (5 * eta(x + A)^8 / eta(x^4 + A)^4 + 64 * x * eta(x^4 + A)^4 ) - 5) / 4, n))}; /* Michael Somos, Jan 14 2012 */

CROSSREFS

Sequence in context: A093404 A236236 A031136 * A107930 A239131 A033400

Adjacent sequences: A050453 A050454 A050455 * A050457 A050458 A050459

KEYWORD

sign,mult

AUTHOR

N. J. A. Sloane, Dec 23 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 07:38 EST 2022. Contains 358691 sequences. (Running on oeis4.)