login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the odd Bessel moment s(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
5

%I #13 Oct 23 2023 09:34:12

%S 1,0,7,1,2,8,5,0,5,5,4,2,1,8,0,7,6,5,8,5,1,8,7,1,1,9,7,8,0,3,0,8,1,7,

%T 1,6,0,7,6,3,1,7,9,7,7,7,1,6,7,0,5,6,2,1,7,0,2,4,6,9,3,6,5,9,9,5,0,1,

%U 8,3,8,7,1,4,9,3,0,6,4,0,8,7,9,9,6,2,7,2,3,0,0,0,9,3,7,4,3,0,9,6,7,6,6,9,9

%N Decimal expansion of the odd Bessel moment s(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

%H David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891 [hep-th], 2008, page 21.

%F s(5,1) = Integral_{0..inf} x*BesselI_0(x)*BesselK_0(x)^4 dx.

%F Equals Pi^2 C (conjectural, where C is A273959).

%e 1.07128505542180765851871197803081716076317977716705621702469365995...

%t s[5, 1] = NIntegrate[x*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 105];

%t RealDigits[s[5, 1]][[1]]

%o (PARI) intnumosc(x=0,x*besseli(0,x)*besselk(0,x)^4,Pi) \\ _Charles R Greathouse IV_, Oct 23 2023

%Y Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273985 (s(5,3)), A273986 (s(5,5)).

%K nonn,cons

%O 1,3

%A _Jean-François Alcover_, Jun 06 2016

%E Offset corrected by _Rick L. Shepherd_, Jun 07 2016