|
|
A062270
|
|
Numerators in partial products of the twin prime constant.
|
|
7
|
|
|
3, 45, 175, 693, 11011, 2807805, 302307005, 402243205, 714186915, 42803602439, 11086133031701, 5908908905896633, 1488200914442251997, 3041106216468949733, 16213234917387714257, 21611220383343195817
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
For n>1, a(n) is the absolute value of the numerator of the determinant of the n X n matrix with elements M[i,j] = 1/(prime(i)-1)^2 for i=j and 1 otherwise. - Alexander Adamchuk, Jun 02 2006
|
|
REFERENCES
|
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, ch. 22.20
|
|
LINKS
|
Table of n, a(n) for n=2..17.
Steven R. Finch, Hardy-Littlewood Constants [Broken link]
Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine]
|
|
FORMULA
|
a(n) = a(n-1)*(prime(n)*(prime(n)-2)) / gcd(a(n-1)*prime(n)*(prime(n)-2), A062271(n)) for n > 2.
|
|
EXAMPLE
|
a(4) = 175 = 3*1*5*3*7*5 / gcd(3*1*5*3*7*5, 2*2*4*4*6*6).
|
|
MATHEMATICA
|
Numerator[Abs[Table[ Det[ DiagonalMatrix[ Table[ 1/(Prime[i]-1)^2 - 1, {i, 1, n} ] ] + 1 ], {n, 2, 20} ]]] (* Alexander Adamchuk, Jun 02 2006 *)
|
|
PROG
|
(PARI) a(n) = numerator(prod(k=2, n, 1-1/(prime(k)-1)^2)); \\ Michel Marcus, May 31 2022
|
|
CROSSREFS
|
Cf. A062271 (denominators), A005597 (decimal expansion).
Sequence in context: A071968 A170921 A093585 * A069955 A289193 A062346
Adjacent sequences: A062267 A062268 A062269 * A062271 A062272 A062273
|
|
KEYWORD
|
easy,nonn,frac
|
|
AUTHOR
|
Frank Ellermann, Jun 16 2001
|
|
EXTENSIONS
|
Typo in link corrected by Martin Griffiths, Apr 03 2009
|
|
STATUS
|
approved
|
|
|
|