This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069955 Let W(n) = Prod_{k=1..n} 1-1/4k^2, the partial Wallis product ( lim n -> infinity W(n)=2/Pi ); then a(n) = numerator(W(n)). 3
 1, 3, 45, 175, 11025, 43659, 693693, 2760615, 703956825, 2807136475, 44801898141, 178837328943, 11425718238025, 45635265151875, 729232910488125, 2913690606794775, 2980705490751054825, 11912508103174630875, 190453061649520333125, 761284675790187924375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Equivalently, denominators in partial products of the following approximation to Pi: Pi = Product_{n >= 1} 4*n^2/(4*n^2-1). Numerators are in A056982. REFERENCES O. J. Farrell and B. Ross, Solved Problems in Analysis, Dover, NY, 1971; p. 77. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..832 B. Gourevitch, L'univers de Pi FORMULA a(n) = numerator(W(n)), with W(n)=(2*n)!*(2*n+1)!/((2^n)*n!)^4. W(n) = (2*n+1)*(binomial(2*n,n)/2^(2*n))^2 = (2*n+1)*(A001790(n)/A046161(n))^2 in lowest terms. a(n) = (-1)^n*A056982(n)*C(-1/2,n)*C(n+1/2,n). - Peter Luschny, Apr 08 2016 PROG (PARI) a(n) = numerator(prod(k=1, n, 1-1/(4*k^2))); \\ Michel Marcus, Oct 22 2016 CROSSREFS Not the same as A001902(n). Cf. A056982 (denominators). W(n)=(3/4)*(A120995(n)/A120994(n)), n>=1. Sequence in context: A071968 A093585 A062270 * A289193 A062346 A002682 Adjacent sequences:  A069952 A069953 A069954 * A069956 A069957 A069958 KEYWORD nonn,frac,easy,changed AUTHOR Benoit Cloitre, Apr 27 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.