login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators in partial products of the twin prime constant.
7

%I #23 May 31 2022 11:23:36

%S 3,45,175,693,11011,2807805,302307005,402243205,714186915,42803602439,

%T 11086133031701,5908908905896633,1488200914442251997,

%U 3041106216468949733,16213234917387714257,21611220383343195817

%N Numerators in partial products of the twin prime constant.

%C For n>1, a(n) is the absolute value of the numerator of the determinant of the n X n matrix with elements M[i,j] = 1/(prime(i)-1)^2 for i=j and 1 otherwise. - _Alexander Adamchuk_, Jun 02 2006

%D Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, ch. 22.20

%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/hrdyltl/hrdyltl.html">Hardy-Littlewood Constants</a> [Broken link]

%H Steven R. Finch, <a href="http://web.archive.org/web/20010614100031/http://www.mathsoft.com/asolve/constant/hrdyltl/hrdyltl.html">Hardy-Littlewood Constants</a> [From the Wayback machine]

%F a(n) = a(n-1)*(prime(n)*(prime(n)-2)) / gcd(a(n-1)*prime(n)*(prime(n)-2), A062271(n)) for n > 2.

%e a(4) = 175 = 3*1*5*3*7*5 / gcd(3*1*5*3*7*5, 2*2*4*4*6*6).

%t Numerator[Abs[Table[ Det[ DiagonalMatrix[ Table[ 1/(Prime[i]-1)^2 - 1, {i, 1, n} ] ] + 1 ], {n, 2, 20} ]]] (* _Alexander Adamchuk_, Jun 02 2006 *)

%o (PARI) a(n) = numerator(prod(k=2, n, 1-1/(prime(k)-1)^2)); \\ _Michel Marcus_, May 31 2022

%Y Cf. A062271 (denominators), A005597 (decimal expansion).

%K easy,nonn,frac

%O 2,1

%A _Frank Ellermann_, Jun 16 2001

%E Typo in link corrected by _Martin Griffiths_, Apr 03 2009