login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062346
Consider 2n tennis players; a(n) is the number of matches needed to let every possible pair play each other.
1
3, 45, 210, 630, 1485, 3003, 5460, 9180, 14535, 21945, 31878, 44850, 61425, 82215, 107880, 139128, 176715, 221445, 274170, 335790, 407253, 489555, 583740, 690900, 812175, 948753, 1101870, 1272810, 1462905, 1673535, 1906128, 2162160, 2443155
OFFSET
2,1
COMMENTS
Number of matchings of size two (edges) in a complete graph on 2n vertices.
FORMULA
a(n) = n*(4*n^3 - 12*n^2 + 11*n - 3)/2. - Swapnil P. Bhatia (sbhatia(AT)cs.unh.edu), Jul 20 2006
a(n+1) = (2*n+2)*(2*n+1)*(2*n)*(2*n-1)/8. - James Mahoney, Oct 19 2011
G.f.: 3*x^2*(1 + 10*x + 5*x^2)/(1 - x)^5. - Vincenzo Librandi, Oct 13 2013
a(n) = binomial(2*n^2-3*n+1, 2). - Wesley Ivan Hurt, Oct 14 2013
a(n) = A014105(n-1)*(A014105(n-1)-1)/2. - Bruno Berselli, Dec 28 2016
EXAMPLE
a(2)=3: given players a,b,c,d, the matches needed are (ab,cd), (ac,bd), (ad,bc).
For example, for the K_4 on vertices {0,1,2,3} the possible matchings of size two are: {{0,1}, {2,3}}, {{0,3},{1,2}} and {{0,2},{1,3}}.
MAPLE
A062346:=n->n*(n-1)*(2*n-3)*(2*n-1)/2; seq(A062346(k), k=2..100); # Wesley Ivan Hurt, Oct 14 2013
MATHEMATICA
CoefficientList[Series[3 (1 + 10 x + 5 x^2)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 13 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {3, 45, 210, 630, 1485}, 40] (* Harvey P. Dale, Nov 22 2022 *)
PROG
(PARI) a(n) = n*(n-1)*(2*n-3)*(2*n-1)/2; \\ Joerg Arndt, Oct 13 2013
(Magma) [n*(n-1)*(2*n-3)*(2*n-1)/2: n in [2..40]]; // Vincenzo Librandi, Oct 13 2013
CROSSREFS
Cf. A014105.
Sequence in context: A062270 A069955 A289193 * A359860 A002682 A073595
KEYWORD
nonn,easy
AUTHOR
Michel ten Voorde, Jul 06 2001
EXTENSIONS
More terms from Swapnil P. Bhatia (sbhatia(AT)cs.unh.edu), Jul 20 2006
STATUS
approved