login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005595 States of a dynamic storage system.
(Formerly M1069)
1
1, 2, 4, 7, 13, 23, 46, 88, 186, 395, 880, 1989, 4644, 10934, 26210, 63319, 154377, 378443, 933022, 2308956, 5735371, 14286907, 35683814, 89324137, 224057918, 563033978, 1417210456, 3572641303, 9018885121, 22796905055, 57692673962, 146167385344, 370710166434 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..200

C. G. Bower, Transforms

M. D. McIlroy, The number of states of a dynamic storage system, Computer J., 25 (No. 3, 1982), 388-392.

M. D. McIlroy, The number of states of a dynamic storage system, Computer J., 25 (No. 3, 1982), 388-392. (Annotated scanned copy)

Index entries for sequences related to bracelets

FORMULA

Also "DIK" (bracelet, indistinct, unlabeled) transform of 2, 1, 1, 1, ...

G.f.: ((2 - 2*x + x^3)/((1 - x)*(1 - x - x^2)) + Sum_{d>0} phi(d)*log((1-x^d)/(1-3*x^d+x^(2*d)))/d)/2. - Andrew Howroyd, Jun 20 2018

PROG

(PARI) seq(n)={Vec((2 - 2*x + x^3)/((1 - x)*(1 - x - x^2)) + sum(d=1, n, eulerphi(d)/d*log((1-x^d)/(1-3*x^d+x^(2*d)) + O(x*x^n))))/2} \\ Andrew Howroyd, Jun 20 2018

CROSSREFS

Sequence in context: A093629 A174566 A018182 * A296689 A096236 A002574

Adjacent sequences:  A005592 A005593 A005594 * A005596 A005597 A005598

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Sequence extended by Christian G. Bower

Terms a(30) and beyond from Andrew Howroyd, Jun 20 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 19:26 EDT 2018. Contains 316530 sequences. (Running on oeis4.)