login
A005593
a(n) = (F(2n+1) + F(2n-1) + F(n+3) - 2)/2, where F() = Fibonacci numbers A000045.
(Formerly M1414)
1
2, 5, 12, 29, 71, 177, 448, 1147, 2960, 7679, 19989, 52145, 136214, 356121, 931540, 2437513, 6379403, 16698113, 43710756, 114427391, 299560472, 784236315, 2053119817, 5375076769, 14072035466, 36840908237, 96450492828, 252510252437
OFFSET
1,1
REFERENCES
M. D. McIlroy, The number of states of a dynamic storage system, Computer J., 25 (No. 3, 1982), 388-392.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. D. McIlroy, The number of states of a dynamic storage system, Computer J., 25 (No. 3, 1982), 388-392. (Annotated scanned copy)
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
MAPLE
A005593:=-(-2+5*z-z**2-2*z**3+z**4)/(z-1)/(z**2+z-1)/(z**2-3*z+1); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Map[(Fibonacci[2#1+1]+Fibonacci[2#1-1]+Fibonacci[ #1+3]-2)/2&, Range[50]]
CROSSREFS
Sequence in context: A054196 A131710 A227237 * A122745 A166292 A010374
KEYWORD
nonn,easy
EXTENSIONS
More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Oct 25 2004
STATUS
approved