login
A005592
a(n) = F(2n+1) + F(2n-1) - 1.
(Formerly M1619)
8
1, 2, 6, 17, 46, 122, 321, 842, 2206, 5777, 15126, 39602, 103681, 271442, 710646, 1860497, 4870846, 12752042, 33385281, 87403802, 228826126, 599074577, 1568397606, 4106118242, 10749957121, 28143753122, 73681302246, 192900153617, 505019158606, 1322157322202
OFFSET
0,2
COMMENTS
For any m, the maximum element in the continued fraction of F(2n+m)/F(m) is a(n). - Benoit Cloitre, Jan 10 2006
The continued fraction [a(n);1,a(n)-1,1,a(n)-1,...] = phi^(2n), where phi = 1.618... is the golden ratio, A001622. - Thomas Ordowski, Jun 07 2013
a(n) is the number of labeled subgraphs of the n-cycle C_n. For example, a(3)=17. There are 7 subgraphs of the triangle C_3 with 0 edges, 6 with 1 edge, 3 with 2 edges, and 1 with 3 edges (C_3 itself); here 7+6+3+1 = 17. - John P. McSorley, Oct 31 2016
a(n) equals the sum of the n-th row of triangle A277919. - John P. McSorley, Nov 25 2016
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 1..200 from Vincenzo Librandi)
M. D. McIlroy, The number of states of a dynamic storage system, Computer J., Vol. 25, No. 3 (1982), pp. 388-392.
M. D. McIlroy, The number of states of a dynamic storage system, Computer J., Vol. 25, No. 3 (1982), pp. 388-392. (Annotated scanned copy)
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Jesús Salas and Alan D. Sokal, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial, J. Stat. Phys., Vol. 135 (2009), pp. 279-373; arXiv preprint, arXiv:0711.1738 [cond-mat.stat-mech], 2007-2009. Mentions this sequence. - N. J. A. Sloane, Mar 14 2014
Robert S. Seamons, Problem B-89, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 4, No. 2 (1966), p. 190; A Close Approximation, Solution to Problem B-89 by Douglas Lind, ibid., Vol. 5, No. 1 (1967), pp. 108-109.
FORMULA
a(n) = Lucas(2*n)-1, with Lucas(n)=A000032(n).
a(n) = floor(r^(2*n)), where r = golden ratio = (1+sqrt(5))/2.
a(n) = floor(Fibonacci(5*n)/Fibonacci(3*n)). - Gary Detlefs, Mar 11 2011
a(n) = +4*a(n-1) -4*a(n-2) +1*a(n-3). - Joerg Arndt, Mar 11 2011
a(n) = A001519(2*n-1) + A001519(2*n+1) - 1. - Reinhard Zumkeller, Aug 09 2013
a(n) = 3*a(n) - a(n-1) + 1; a(n) = A004146(n) + 1, n>0. - Richard R. Forberg, Sep 04 2013
a(n) = 2*cosh(2*n*arcsinh(1/2)) - 1. - Ilya Gutkovskiy, Oct 31 2016
a(n) = floor(sqrt(5)*Fibonacci(2*n)), for n > 0 (Seamons, 1966). - Amiram Eldar, Feb 05 2022
EXAMPLE
G.f. = 1 + 2*x + 6*x^2 + 17*x^3 + 46*x^4 + 122*x^5 + 321*x^6 + 842*x^7 + ...
MAPLE
A005592:=-(2-2*z+z**2)/(z-1)/(z**2-3*z+1); # conjectured by Simon Plouffe in his 1992 dissertation
# second Maple program:
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= n-> F(2*n+1)+F(2*n-1)-1:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 04 2016
MATHEMATICA
Table[Fibonacci[2n+1]+Fibonacci[2n-1]-1, {n, 30}] (* Harvey P. Dale, Aug 22 2011 *)
a[n_] := LucasL[2n]-1; Array[a, 30] (* Jean-François Alcover, Dec 09 2015 *)
PROG
(Sage) [lucas_number2(n, 3, 1)-1 for n in range(1, 29)] # Zerinvary Lajos, Jul 06 2008
(Magma) [Fibonacci(2*n+1)+Fibonacci(2*n-1)-1: n in [1..30]]; // Vincenzo Librandi, Aug 23 2011
(PARI) a(n)=fibonacci(2*n+1)+fibonacci(2*n-1)-1 \\ Charles R Greathouse IV, Aug 23 2011
(Haskell)
a005592 n = a005592_list !! (n-1)
a005592_list = map (subtract 1) $
tail $ zipWith (+) a001519_list $ tail a001519_list
-- Reinhard Zumkeller, Aug 09 2013
CROSSREFS
Equals A004146+1 and A005248+1.
Bisection of A014217; the other bisection is A002878, which also bisects A000032.
Sequence in context: A316591 A222115 A190050 * A346169 A102403 A278428
KEYWORD
nonn,easy,nice
EXTENSIONS
Formulae and comments by Clark Kimberling, Nov 24 2010
a(0)=1 prepended by Alois P. Heinz, Nov 04 2016
STATUS
approved