login
A092810
Binomial transform of a Jacobsthal trisection.
3
1, 6, 54, 486, 4374, 39366, 354294, 3188646, 28697814, 258280326, 2324522934, 20920706406, 188286357654, 1694577218886, 15251194969974, 137260754729766, 1235346792567894, 11118121133111046, 100063090197999414, 900567811781994726, 8105110306037952534
OFFSET
0,2
COMMENTS
Binomial transform of A082311.
FORMULA
G.f.: (1-3*x)/(1-9*x).
E.g.f.: 2*exp(9*x)/3 + 1/3.
a(n) = 2*9^n/3 + 0^n/3.
a(n) = A054878(2n+1) - A054878(2n-1) + 0^n/3 = A015518(2n+1) - A015518(2n-1) + 0^n/3.
a(n) = 2*3^(2*n-1), for n>0. - Gionata Neri, Jun 18 2015
MATHEMATICA
Table[EulerPhi[9^n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Nov 10 2009 *)
PROG
(PARI) Vec((1-3*x)/(1-9*x) + O(x^30)) \\ Michel Marcus, Jun 18 2015
(Magma) [1] cat [2*3^(2*n-1): n in [1..20]]; // Vincenzo Librandi, Jun 20 2015
CROSSREFS
Cf. A001045.
Sequence in context: A202364 A177484 A353207 * A092472 A228413 A098658
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 10 2004
STATUS
approved