OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
Recurrence (for n>3): (n-3)*n*a(n) = (17*n^2-55*n+24)*a(n-1) - 36*(n-2)*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 9^n. - Vaclav Kotesovec, Oct 14 2012
a(n) = 3^(2*n-1) * (2 + Sum_{k=1..n-2} 2^(k+2)*C(2*k+1,k-1)/3^(2*k+2) ), for n>2. - Vaclav Kotesovec, Oct 28 2012
MATHEMATICA
Table[Sum[Sum[Sum[If[i+j+k==n, (2n)!/(i+j)!/(j+k)!/(k+i)!, 0], {i, 0, n}], {j, 0, n}], {k, 0, n}], {n, 0, 20}]
(* or *)
Flatten[{1, 6, RecurrenceTable[{(n-3)*n*a[n]==(17*n^2-55*n+24)*a[n-1]-36*(n-2)*(2*n-3)*a[n-2], a[2]==54, a[3]==510}, a, {n, 2, 20}]}] (* Vaclav Kotesovec, Oct 14 2012 *)
Flatten[{1, 6, Table[3^(2*n-1)*(2+Sum[2^(k+2)*Binomial[2*k+1, k-1]/3^(2*k+2), {k, 1, n-2}]), {n, 2, 20}]}] (* Vaclav Kotesovec, Oct 28 2012 *)
PROG
(PARI) a(n)=sum(i=0, n, sum(j=0, n, sum(k=0, n, if(i+j+k-n, 0, (2*n)!/(i+j)!/(j+k)!/(k+i)!))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Mar 25 2004
STATUS
approved