login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092472
a(n)=sum(i+j+k=n,(2n)!/(i+j)!/(j+k)!/(k+i)!) 0<=i<=n, 0<=j<=n, 0<=k<=n.
4
1, 6, 54, 510, 4830, 45486, 425502, 3956238, 36594558, 337038702, 3093092574, 28302208974, 258331692606, 2353101799470, 21397006320030, 194281959853710, 1761880227283710, 15961196057303790, 144466419007648350
OFFSET
0,2
LINKS
FORMULA
Recurrence (for n>3): (n-3)*n*a(n) = (17*n^2-55*n+24)*a(n-1) - 36*(n-2)*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 9^n. - Vaclav Kotesovec, Oct 14 2012
a(n) = 3^(2*n-1) * (2 + Sum_{k=1..n-2} 2^(k+2)*C(2*k+1,k-1)/3^(2*k+2) ), for n>2. - Vaclav Kotesovec, Oct 28 2012
MATHEMATICA
Table[Sum[Sum[Sum[If[i+j+k==n, (2n)!/(i+j)!/(j+k)!/(k+i)!, 0], {i, 0, n}], {j, 0, n}], {k, 0, n}], {n, 0, 20}]
(* or *)
Flatten[{1, 6, RecurrenceTable[{(n-3)*n*a[n]==(17*n^2-55*n+24)*a[n-1]-36*(n-2)*(2*n-3)*a[n-2], a[2]==54, a[3]==510}, a, {n, 2, 20}]}] (* Vaclav Kotesovec, Oct 14 2012 *)
Flatten[{1, 6, Table[3^(2*n-1)*(2+Sum[2^(k+2)*Binomial[2*k+1, k-1]/3^(2*k+2), {k, 1, n-2}]), {n, 2, 20}]}] (* Vaclav Kotesovec, Oct 28 2012 *)
PROG
(PARI) a(n)=sum(i=0, n, sum(j=0, n, sum(k=0, n, if(i+j+k-n, 0, (2*n)!/(i+j)!/(j+k)!/(k+i)!))))
CROSSREFS
Sequence in context: A177484 A353207 A092810 * A228413 A098658 A357164
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Mar 25 2004
STATUS
approved