login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092471
a(n) = Sum_{i+j+k=n, 0<=i<=n, 0<=j<=n, 0<=k<=n} (n+i+j)!/((i+j)! * j! * k!).
1
1, 5, 43, 495, 7281, 133173, 2945755, 76769759, 2306295265, 78492222693, 2985018589323, 125449316558415, 5773653823774929, 288808141870191765, 15601413322486382523, 905170780889312826303, 56136189828704013001665
OFFSET
0,2
LINKS
FORMULA
From Vaclav Kotesovec, Oct 30 2021: (Start)
a(n) ~ 2^(2*n + 1/2) * n^n / exp(n - 3/2).
Recurrence: n*(2*n - 5)*a(n) = (2*n - 5)*(2*n - 1)*(2*n + 3)*a(n-1) - (2*n - 3)*(24*n^2 - 72*n + 29)*a(n-2) + (2*n - 9)*(2*n - 5)*(2*n - 1)*a(n-3) + (n-3)*(2*n - 1)*a(n-4). (End)
PROG
(PARI) a(n)=sum(i=0, n, sum(j=0, n, sum(k=0, n, if(i+j+k-n, 0, (n+i+j)!/(i+j)!/j!/k!))))
CROSSREFS
Sequence in context: A301976 A083070 A191802 * A093620 A231277 A188365
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Mar 25 2004
STATUS
approved