login
A093620
Values of Laguerre polynomials: a(n) = 2^n*n!*LaguerreL(n,-1/2,-2).
5
1, 5, 43, 499, 7193, 123109, 2430355, 54229907, 1347262321, 36833528197, 1097912385851, 35409316648435, 1227820993510153, 45528569866101989, 1797044836586213923, 75200136212985945619, 3324579846014080352225, 154797474251689486249477, 7570037033145534341015371
OFFSET
0,2
COMMENTS
Not the same as the numerator of LaguerreL(n,-1/2,-2). - Robert G. Wilson v, Apr 08 2004
LINKS
FORMULA
E.g.f.: exp(4*x/(1-2*x))/(1-2*x)^(1/2).
a(n) ~ n^n*2^(n-1/2)*exp(-n+2*sqrt(2*n)-1) * (1 + 5/(6*sqrt(2*n))). - Vaclav Kotesovec, Jun 22 2013
MAPLE
a:= proc(n) option remember; `if`(n<2, 4*n+1,
(4*n+1)*a(n-1) -2*(n-1)*(2*n-3)*a(n-2))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jun 22 2013
MATHEMATICA
Table[2^n n!LaguerreL[n, -1/2, -2], {n, 0, 16}] (* Robert G. Wilson v, Apr 08 2004 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(exp(4*x/(1-2*x))/(1-2*x)^(1/2))) \\ G. C. Greubel, May 11 2018
(PARI) a(n) = 2^n*n!*pollaguerre(n, -1/2, -2); \\ Michel Marcus, Feb 05 2021
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(4*x/(1-2*x))/(1-2*x)^(1/2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 11 2018
CROSSREFS
Bisection of A005425.
Sequence in context: A083070 A191802 A092471 * A231277 A188365 A107720
KEYWORD
nonn
AUTHOR
Karol A. Penson, Apr 06 2004
EXTENSIONS
More terms from Robert G. Wilson v, Apr 08 2004
STATUS
approved