login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093617
Numbers m such that there exists a number k less than m with k*m and m^2 having an equal number of divisors.
3
18, 50, 75, 90, 98, 108, 126, 144, 147, 150, 198, 234, 242, 245, 294, 300, 306, 324, 338, 342, 350, 363, 384, 400, 414, 450, 490, 500, 507, 522, 525, 540, 550, 558, 578, 588, 600, 605, 630, 640, 648, 650, 666, 720, 722, 726, 735, 738, 756, 774, 784, 825
OFFSET
1,1
COMMENTS
From Amiram Eldar, Apr 15 2024: (Start)
All the terms are nonsquarefree numbers (A013929).
The number k is of the form j^2*A007913(m).
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 0, 5, 64, 678, 6954, 69867, 699511, 6996322, 69962916, 699616048, ... . Apparently, the asymptotic density of this sequence exists and equals 0.06996... . (End)
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..300 from Vincenzo Librandi)
FORMULA
A093616(a(n)) < n.
MATHEMATICA
A093616[n_] := For[k = 1, True, k++, If[DivisorSigma[0, k*n] == DivisorSigma[0, n^2], Return[k]]]; Select[Range[1000], A093616[#] < # &] (* Jean-François Alcover, Aug 14 2014 *)
f[p_, e_] := p^(e + Mod[e, 2]); q[n_] := Module[{fct = FactorInteger[n], d, m, k = 1}, d = Times @@ ((2*# + 1) & /@ fct[[;; , 2]]); s = Times @@ f @@@ fct; m = Sqrt[n^2/s]; While[k < m && DivisorSigma[0, k^2*s] != d, k++]; k < m]; Select[Range[1000], q] (* Amiram Eldar, Apr 15 2024 *)
PROG
(PARI) is(n) = {my(f = factor(n), d = prod(i = 1, #f~, 2*f[i, 2] + 1), s = prod(i = 1, #f~, f[i, 1]^(f[i, 2] + f[i, 2]%2)), m = sqrtint(n^2/s), k = 1); while(k < m && numdiv(k^2 * s) != d, k++); k < m; } \\ Amiram Eldar, Apr 15 2024
CROSSREFS
Complement of A093618.
Sequence in context: A097319 A258211 A354929 * A089219 A102835 A095990
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 06 2004
STATUS
approved