The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191802 G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(4*n^2). 4
 1, 1, 5, 43, 473, 5942, 81393, 1186342, 18132473, 287948903, 4722077279, 79636530163, 1377304530677, 24382127678100, 441294262119031, 8160739579770316, 154169018332135841, 2975846752734820345, 58718914018159811186 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..18. FORMULA Let A = g.f. A(x), then A satisfies: (1) A = Sum_{n>=0} x^n*A^(4*n)*Product_{k=1..n} (1-x*A^(16*k-12))/(1-x*A^(16*k-4)); (2) A = 1/(1- A^4*x/(1- A^4*(A^8-1)*x/(1- A^20*x/(1- A^12*(A^16-1)*x/(1- A^36*x/(1- A^20*(A^24-1)*x/(1- A^52*x/(1- A^28*(A^32-1)*x/(1- ...))))))))) (continued fraction); due to a q-series identity and an identity of a partial elliptic theta function, respectively. EXAMPLE G.f.: A(x) = 1 + x + 5*x^2 + 43*x^3 + 473*x^4 + 5942*x^5 + 81393*x^6 +... where the g.f. satisfies: A(x) = 1 + x*A(x)^4 + x^2*A(x)^16 + x^3*A(x)^36 + x^4*A(x)^64 +...+ x^n*A(x)^(4*n^2) +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*(A+x*O(x^n))^(4*m^2))); polcoeff(A, n)} CROSSREFS Cf. A107595, A191800, A191801, A191803, A191804. Sequence in context: A274666 A301976 A083070 * A092471 A093620 A231277 Adjacent sequences: A191799 A191800 A191801 * A191803 A191804 A191805 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 16 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 11:46 EDT 2024. Contains 372712 sequences. (Running on oeis4.)