login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191801
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(3*n^2).
4
1, 1, 4, 28, 251, 2573, 28813, 343833, 4308210, 56154805, 756731761, 10499096630, 149551069156, 2182935186698, 32613646656198, 498420592612153, 7790219357236805, 124545937719356873, 2037614647316548891, 34134979366157116560
OFFSET
0,3
FORMULA
Let A = g.f. A(x), then A satisfies:
(1) A = Sum_{n>=0} x^n*A^(3*n)*Product_{k=1..n} (1-x*A^(12*k-9))/(1-x*A^(12*k-3));
(2) A = 1/(1- A^3*x/(1- A^3*(A^6-1)*x/(1- A^15*x/(1- A^9*(A^12-1)*x/(1- A^27*x/(1- A^15*(A^18-1)*x/(1- A^39*x/(1- A^21*(A^24-1)*x/(1- ...))))))))) (continued fraction);
due to a q-series identity and an identity of a partial elliptic theta function, respectively.
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 251*x^4 + 2573*x^5 + 28813*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x)^3 + x^2*A(x)^12 + x^3*A(x)^27 + x^4*A(x)^48 +...+ x^n*A(x)^(3*n^2) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*(A+x*O(x^n))^(3*m^2))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 16 2011
STATUS
approved