login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230640
Let M(1)=0 and for n>1, B(n)=(M(ceiling(n/2))+M(floor(n/2))+2)/2, M(n)=3^B(n)+M(floor(n/2))+1. This sequence gives M(n).
20
0, 4, 28, 248, 129140168, 68630377364912, 2088595827392656793085408064780643444068898148936888424953199350296
OFFSET
1,2
LINKS
Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
MAPLE
f:=proc(n) option remember; local B, M;
if n<=1 then RETURN([0, 0]);
else
B:=(f(ceil(n/2))[2] + f(floor(n/2))[2] + 2)/2;
M:=3^B+f(floor(n/2))[2]+1; RETURN([B, M]); fi;
end proc;
[seq(f(n)[2], n=1..7)];
CROSSREFS
Cf. A230639.
Related base-3 sequences: A053735, A134451, A230641, A230642, A230643, A230853, A230854, A230855, A230856, A230639, A230640, A010063 (trajectory of 1)
Smallest number m such that u + (sum of base-b digits of u) = m has exactly n solutions, for bases 2 through 10: A230303, A230640, A230638, A230867, A238840, A238841, A238842, A238843, A006064.
Sequence in context: A354602 A228714 A371693 * A300050 A191801 A365562
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Oct 31 2013
STATUS
approved