login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230639
Let M(1)=0 and for n>1, B(n)=(M(ceiling(n/2))+M(floor(n/2))+2)/2, M(n)=3^B(n)+M(floor(n/2))+1. This sequence gives B(n).
12
1, 3, 5, 17, 29, 139, 249, 64570209, 129140169, 34315253252541, 68630377364913, 1044297913696328396542704032390321722034449074468444246791788357605, 2088595827392656793085408064780643444068898148936888424953199350297
OFFSET
2,2
COMMENTS
The largest power of 3 in M(n) = A230640(n).
LINKS
Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
MAPLE
f:=proc(n) option remember; local B, M;
if n<=1 then RETURN([0, 0]);
else
B:=(f(ceil(n/2))[2] + f(floor(n/2))[2] + 2)/2;
M:=3^B+f(floor(n/2))[2]+1; RETURN([B, M]); fi;
end proc;
[seq(f(n)[1], n=1..9)];
CROSSREFS
Cf. A230093, A230640 (for M(n)).
Related base-3 sequences: A053735, A134451, A230641, A230642, A230643, A230853, A230854, A230855, A230856, A230639, A230640, A010063 (trajectory of 1)
Sequence in context: A350856 A174913 A079496 * A038898 A333353 A297175
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Oct 31 2013
EXTENSIONS
Terms a(10) onward from Max Alekseyev, Nov 02 2013
STATUS
approved