login
A333353
Primes p whose order of primeness A078442(p) is prime.
2
3, 5, 17, 31, 41, 59, 67, 83, 109, 157, 179, 191, 211, 241, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991, 1031, 1087, 1153, 1171, 1201, 1217, 1297, 1409, 1433, 1447, 1471, 1499, 1523, 1597, 1621
OFFSET
1,1
LINKS
N. Fernandez, An order of primeness [cached copy, included with permission of the author]
FORMULA
{ p in primes : A078442(p) is prime }.
a(n) = prime(A333364(n)).
EXAMPLE
31 is a term: 31 -> 11 -> 5 -> 3 -> 2 -> 1, five (a prime number of) steps "->" = pi = A000720.
MAPLE
b:= proc(n) option remember;
`if`(isprime(n), 1+b(numtheory[pi](n)), 0)
end:
a:= proc(n) option remember; local p;
p:= `if`(n=1, 1, a(n-1));
do p:= nextprime(p);
if isprime(b(p)) then break fi
od; p
end:
seq(a(n), n=1..55);
MATHEMATICA
b[n_] := b[n] = If[!PrimeQ[n], 0, 1+b[PrimePi[n]]];
okQ[n_] := PrimeQ[n] && PrimeQ[b[n]];
Select[Range[2000], okQ] (* Jean-François Alcover, May 30 2022 *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 15 2020
STATUS
approved