login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236542
Array T(n,k) read along descending antidiagonals: row n contains the primes with n steps in the prime index chain.
9
2, 7, 3, 13, 17, 5, 19, 41, 59, 11, 23, 67, 179, 277, 31, 29, 83, 331, 1063, 1787, 127, 37, 109, 431, 2221, 8527, 15299, 709, 43, 157, 599, 3001, 19577, 87803, 167449, 5381, 47, 191, 919, 4397, 27457, 219613, 1128889, 2269733, 52711
OFFSET
1,1
COMMENTS
Row n contains the primes A000040(j) for which A049076(j) = n.
FORMULA
T(1,k) = A007821(k).
T(n,k) = prime( T(n-1,k) ), n>1 .
EXAMPLE
The array starts:
2, 7, 13, 19, 23, 29, 37, 43, 47, 53,...
3, 17, 41, 67, 83, 109, 157, 191, 211, 241,...
5, 59, 179, 331, 431, 599, 919, 1153, 1297, 1523,...
11, 277, 1063, 2221, 3001, 4397, 7193, 9319,10631,12763,...
31, 1787, 8527,19577,27457,42043,72727,96797,112129,137077,...
MAPLE
A236542 := proc(n, k)
option remember ;
if n = 1 then
A007821(k) ;
else
ithprime(procname(n-1, k)) ;
end if:
end proc:
for d from 2 to 10 do
for k from d-1 to 1 by -1 do
printf("%d, ", A236542(d-k, k)) ;
end do:
end do:
MATHEMATICA
A007821 = Prime[Select[Range[15], !PrimeQ[#]&]];
T[n_, k_] := T[n, k] = If[n == 1, If[k <= Length[A007821], A007821[[k]], Print["A007821 must be extended"]; Abort[]], Prime[T[n-1, k]]];
Table[T[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 16 2020 *)
CROSSREFS
Cf. A007821 (row 1), A049078 (row 2), A049079 (row 3), A007097 (column 1), A058010 (diagonal), A057456 - A057457 (columns), A135044, A236536.
Sequence in context: A056756 A120861 A354368 * A279357 A099130 A362359
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Jan 28 2014
STATUS
approved