login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array T(n,k) read along descending antidiagonals: row n contains the primes with n steps in the prime index chain.
9

%I #14 Apr 18 2020 19:14:00

%S 2,7,3,13,17,5,19,41,59,11,23,67,179,277,31,29,83,331,1063,1787,127,

%T 37,109,431,2221,8527,15299,709,43,157,599,3001,19577,87803,167449,

%U 5381,47,191,919,4397,27457,219613,1128889,2269733,52711

%N Array T(n,k) read along descending antidiagonals: row n contains the primes with n steps in the prime index chain.

%C Row n contains the primes A000040(j) for which A049076(j) = n.

%H N. Fernandez, <a href="http://www.borve.org/primeness/FOP.html">An order of primeness, F(p)</a>.

%F T(1,k) = A007821(k).

%F T(n,k) = prime( T(n-1,k) ), n>1 .

%e The array starts:

%e 2, 7, 13, 19, 23, 29, 37, 43, 47, 53,...

%e 3, 17, 41, 67, 83, 109, 157, 191, 211, 241,...

%e 5, 59, 179, 331, 431, 599, 919, 1153, 1297, 1523,...

%e 11, 277, 1063, 2221, 3001, 4397, 7193, 9319,10631,12763,...

%e 31, 1787, 8527,19577,27457,42043,72727,96797,112129,137077,...

%p A236542 := proc(n,k)

%p option remember ;

%p if n = 1 then

%p A007821(k) ;

%p else

%p ithprime(procname(n-1,k)) ;

%p end if:

%p end proc:

%p for d from 2 to 10 do

%p for k from d-1 to 1 by -1 do

%p printf("%d,",A236542(d-k,k)) ;

%p end do:

%p end do:

%t A007821 = Prime[Select[Range[15], !PrimeQ[#]&]];

%t T[n_, k_] := T[n, k] = If[n == 1, If[k <= Length[A007821], A007821[[k]], Print["A007821 must be extended"]; Abort[]], Prime[T[n-1, k]]];

%t Table[T[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Apr 16 2020 *)

%Y Cf. A007821 (row 1), A049078 (row 2), A049079 (row 3), A007097 (column 1), A058010 (diagonal), A057456 - A057457 (columns), A135044, A236536.

%K nonn,tabl

%O 1,1

%A _R. J. Mathar_, Jan 28 2014