OFFSET
1,3
COMMENTS
Fernandez calls this the order of primeness of n.
When a nonoriented rooted tree is encoded as a Matula-Goebel number n, a(n) tells how many edges needs to be climbed up from the root of the tree until the first branching vertex (or the top of the tree, if n is one of the terms of A007097) is encountered. Please see illustrations at A061773. - Antti Karttunen, Jan 27 2014
Zero-based column index of n in the Kimberling-style dispersion table of the primes (see A114537). - Allan C. Wechsler, Jan 09 2024
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
N. Fernandez, An order of primeness, F(p)
N. Fernandez, An order of primeness [cached copy, included with permission of the author]
FORMULA
a(n) = A049076(n)-1.
EXAMPLE
a(1) = 0 since 1 is not prime;
a(2) = a(prime(1)) = a(1) + 1 = 1 + 0 = 1;
a(3) = a(prime(2)) = a(2) + 1 = 1 + 1 = 2;
a(4) = 0 since 4 is not prime;
a(5) = a(prime(3)) = a(3) + 1 = 2 + 1 = 3;
a(6) = 0 since 6 is not prime;
a(7) = a(prime(4)) = a(4) + 1 = 0 + 1 = 1.
MAPLE
A078442 := proc(n)
if not isprime(n) then
0 ;
else
1+procname(numtheory[pi](n)) ;
end if;
end proc: # R. J. Mathar, Jul 07 2012
MATHEMATICA
a[n_] := a[n] = If[!PrimeQ[n], 0, 1+a[PrimePi[n]]]; Array[a, 105] (* Jean-François Alcover, Jan 26 2018 *)
PROG
(PARI) A078442(n)=for(i=0, n, isprime(n) || return(i); n=primepi(n)) \\ M. F. Hasler, Mar 09 2010
(Haskell)
a078442 n = fst $ until ((== 0) . snd)
(\(i, p) -> (i + 1, a049084 p)) (-2, a000040 n)
-- Reinhard Zumkeller, Jul 14 2013
KEYWORD
nonn
AUTHOR
Henry Bottomley, Dec 31 2002
STATUS
approved