login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078444
Floor of geometric mean of two consecutive primes.
3
2, 3, 5, 8, 11, 14, 17, 20, 25, 29, 33, 38, 41, 44, 49, 55, 59, 63, 68, 71, 75, 80, 85, 92, 98, 101, 104, 107, 110, 119, 128, 133, 137, 143, 149, 153, 159, 164, 169, 175, 179, 185, 191, 194, 197, 204, 216, 224, 227, 230, 235, 239, 245, 253, 259, 265, 269, 273, 278
OFFSET
1,1
COMMENTS
For n > 1, a(n) = prime(n) iff prime(n) and prime(n+1) are twin primes.
LINKS
Eric Weisstein's World of Mathematics, Andrica's Conjecture
FORMULA
a(n) = floor(sqrt(prime(n)*prime(n+1))).
From Miko Labalan, Dec 12 2015: (Start)
a(n) = A006254(A028310(n - 1)) + A067076(n);
a(n) = A067076(A028310(n - 1)) + A006254(n);
a(n) = A005097(A028310(n - 1)) + A005097(n).
(End)
For n >= 2 these formulas are equivalent to sqrt(prime(n)*prime(n+1)) > (prime(n)+prime(n+1))/2 - 1, and thus to A001223(n) <= 2 + 2*sqrt(2*prime(n)). This would be implied by Andrica's conjecture, but is as yet unproven. - Robert Israel, Dec 13 2015
EXAMPLE
a(7) = floor(sqrt(prime(7)*prime(8))) = 17.
MAPLE
seq(floor(sqrt(ithprime(i)*ithprime(i+1))), i=1..100); # Robert Israel, Dec 12 2015
MATHEMATICA
Table[Floor[Sqrt[Prime[n] Prime[n + 1]]], {n, 60}] (* Vincenzo Librandi, Dec 12 2015 *)
Table[Ceiling[(Prime[n] + Prime[n + 1])/2 - 1], {n, 100}] (* Miko Labalan, Dec 14 2015 *)
PROG
(Magma) [Floor(Sqrt(NthPrime(n)*NthPrime(n+1))): n in [1..60]]; // Vincenzo Librandi, Dec 12 2015
(PARI) a(n) = sqrtint(prime(n)*prime(n+1)); \\ Michel Marcus, Dec 12 2015
CROSSREFS
Sequence in context: A301892 A271876 A358533 * A332071 A225087 A194221
KEYWORD
nonn,easy
AUTHOR
Lior Manor, Dec 31 2002
STATUS
approved