login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138947
Square array T[i+1,j] = prime(T[i,j]), T[1,j] = j-th nonprime = A018252(j); read by upward antidiagonals.
3
1, 4, 2, 6, 7, 3, 8, 13, 17, 5, 9, 19, 41, 59, 11, 10, 23, 67, 179, 277, 31, 12, 29, 83, 331, 1063, 1787, 127, 14, 37, 109, 431, 2221, 8527, 15299, 709, 15, 43, 157, 599, 3001, 19577, 87803
OFFSET
1,2
COMMENTS
For i>1, T[i,j] = A018252(j)-th number among those not occurring in rows < i.
A permutation of the integers > 0.
Transpose of A114537. See that sequence and the link for more information and references.
REFERENCES
Alexandrov, Lubomir. "On the nonasymptotic prime number distribution." arXiv preprint math/9811096 (1998). (See Appendix.)
LINKS
N. Fernandez, An order of primeness [cached copy, included with permission of the author]
FORMULA
T[i,j] = j-th number for which A078442 equals i-1.
EXAMPLE
The first row (1,4,6,8,9,10...) of the array gives the nonprime numbers A018252.
The 2nd row (2,7,13,19,23,29,37,...) of the array gives the primes with nonprime index, A000040(A018252(j)) = A007821(j).
The i-th row is { A000040(k) | A049076(k)=i-1 } = A078442^{-1}(i-1).
Column j is the sequence b(n+1)=prime(b(n)) starting with b(j)=A018252(j): A007097, A057450, A057451, A057452, A057453, A057456, A057457, ...
MATHEMATICA
t[1, 1] = 1; t[1, 2] = 4; t[1, k_] := (p = t[1, k-1]; If[ PrimeQ[p+1], p+2, p+1]); t[n_ /; n > 1, k_] := Prime[t[n-1, k]]; Flatten[ Table[ t[n, k-n+1], {k, 1, 9}, {n, 1, k}]] (* Jean-François Alcover, Oct 03 2011 *)
PROG
(PARI) p=c=0; T=matrix( 10, 10, i, j, if( i==1, while( isprime(c++), ); p=c, p=prime(p))); A138947=concat( vector( vecmin( matsize( T )), i, vector( i, j, T[ j, i+1-j ])))
CROSSREFS
If the antidiagonals are read in the opposite direction we get A114537.
Sequence in context: A338915 A173197 A256568 * A083412 A086399 A105365
KEYWORD
nonn,tabl
AUTHOR
M. F. Hasler, Apr 28 2008
STATUS
approved