login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114537 Dispersion of the primes (an array read by antidiagonals). 55
1, 2, 4, 3, 7, 6, 5, 17, 13, 8, 11, 59, 41, 19, 9, 31, 277, 179, 67, 23, 10, 127, 1787, 1063, 331, 83, 29, 12, 709, 15299, 8527, 2221, 431, 109, 37, 14, 5381, 167449, 87803, 19577, 3001, 599, 157, 43, 15, 52711, 2269733, 1128889, 219613, 27457, 4397, 919, 191, 47 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A number is prime if and only if it does not lie in Column 1. As a sequence, a permutation of the natural numbers. The fractal sequence of this dispersion is A022447 and the transposition sequence is A114538.

The dispersion of the composite numbers is given at A114577.

REFERENCES

Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria 45 (1997) 157-168.

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..172

Neil Fernandez, An order of primeness, F(p)

Neil Fernandez, An order of primeness [cached copy, included with permission of the author]

Neil Fernandez, The Exploring Primeness Project

Clark Kimberling, Interspersions and Dispersions.

Clark Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321.

Robert G. Wilson v, The Northwest Corner of the Primeness Array (24 x 24).

FORMULA

T(r,1) = A018252(r). T(r,c) = prime(T(r,c-1)), c>1. [R. J. Mathar, Oct 22 2010]

EXAMPLE

Northwest corner of the Primeness array:

1   2   3    5    11     31     127       709       5381       52711        648391

4   7  17   59   277   1787   15299    167449    2269733    37139213     718064159

6  13  41  179  1063   8527   87803   1128889   17624813   326851121    7069067389

8  19  67  331  2221  19577  219613   3042161   50728129   997525853   22742734291

9  23  83  431  3001  27457  318211   4535189   77557187  1559861749   36294260117

10  29 109  599  4397  42043  506683   7474967  131807699  2724711961   64988430769

12  37 157  919  7193  72727  919913  14161729  259336153  5545806481  136395369829

14  43 191 1153  9319  96797 1254739  19734581  368345293  8012791231  200147986693

15  47 211 1297 10631 112129 1471343  23391799  440817757  9672485827  243504973489

16  53 241 1523 12763 137077 1828669  29499439  563167303 12501968177  318083817907

18  61 283 1847 15823 173867 2364361  38790341  751783477 16917026909  435748987787

20  71 353 2381 21179 239489 3338989  56011909 1107276647 25366202179  664090238153

21  73 367 2477 22093 250751 3509299  59053067 1170710369 26887732891  705555301183

22  79 401 2749 24859 285191 4030889  68425619 1367161723 31621854169  835122557939

24  89 461 3259 30133 352007 5054303  87019979 1760768239 41192432219 1099216100167

25  97 509 3637 33967 401519 5823667 101146501 2062666783 48596930311 1305164025929

26 101 547 3943 37217 443419 6478961 113256643 2323114841 55022031709 1484830174901

27 103 563 4091 38833 464939 6816631 119535373 2458721501 58379844161 1579041544637

MAPLE

A114537 := proc(r, c) option remember; if c = 1 then A018252(r) ; else ithprime(procname(r, c-1)) ; end if; end proc: # R. J. Mathar, Oct 22 2010

MATHEMATICA

NonPrime[n_] := FixedPoint[n + PrimePi@# + 1 &, n]; t[n_, k_] := Nest[Prime, NonPrime[n], k]; Table[ t[n - k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten

(* or to view the table *) Table[t[n, k], {n, 0, 6}, {k, 0, 10}] // TableForm (* Robert G. Wilson v, Dec 26 2005 *)

CROSSREFS

Columns 1-11: A018252, A007821, A049078, A049079, A049080, A049081, A058322, A058324, A058325, A058326, A058327, A058328, A093046.

Rows 1-7: A007097, A057450, A057451, A057452, A057453, A057456, A057457.

Diagonal: A181441.

Cf. A000040, A007821, A114538, A006450.

Sequence in context: A191442 A191738 A218602 * A243349 A266413 A245614

Adjacent sequences:  A114534 A114535 A114536 * A114538 A114539 A114540

KEYWORD

nonn,tabl,nice

AUTHOR

Clark Kimberling, Dec 07 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 23 19:46 EDT 2017. Contains 286926 sequences.