login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173197
a(0)=1, a(n)= 2+2^n/6+4*(-1)^n/3, n>0.
1
1, 1, 4, 2, 6, 6, 14, 22, 46, 86, 174, 342, 686, 1366, 2734, 5462, 10926, 21846, 43694, 87382, 174766, 349526, 699054, 1398102, 2796206, 5592406, 11184814, 22369622, 44739246, 89478486, 178956974, 357913942, 715827886, 1431655766, 2863311534, 5726623062, 11453246126, 22906492246, 45812984494, 91625968982, 183251937966, 366503875926, 733007751854
OFFSET
0,3
COMMENTS
Linked to Jacobsthal numbers (expansion of tan(x), a.k.a. Zag numbers) A000182=1,2,16,272,...: a(n+1)-2a(n) = -(-1)^n*(A000182(n) mod 10) = (-1,2,-6,2,-6,2,-6,...).
Cf. A173114, related to Euler (or secant, or Zig) numbers, A000364. a(n+1)+A010684=A001045.
First differences: 0,3,-2,4,0,8,8,24,... = 0,A154879 (third differences of A001045).
Main diagonal: A003945; first upper diagonal: -A171449; second: 4*A011782.
FORMULA
a(n) = A093380(n+4), n>3.
a(n) = +2*a(n-1) +a(n-2) -2*a(n-3), n>3.
G.f.: 1-x*(-1-2*x+7*x^2)/((x-1)*(2*x-1)*(1+x)).
a(2n+2)+a(2n+3)=6*A047689.
a(2n)-a(2n-2) = 3,1,2,4,8,16,... = 3,A000079.
CROSSREFS
Sequence in context: A135853 A376240 A338915 * A256568 A138947 A083412
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Feb 12 2010
STATUS
approved