login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173114
a(0)=a(1)=1, a(n) = 2*a(n-1)- A010686(n), n>1.
2
1, 1, 1, -3, -7, -19, -39, -83, -167, -339, -679, -1363, -2727, -5459, -10919, -21843, -43687, -87379, -174759, -349523, -699047, -1398099, -2796199, -5592403, -11184807, -22369619, -44739239, -89478483, -178956967, -357913939, -715827879, -1431655763
OFFSET
0,4
COMMENTS
The sequence in the first row and successive differences in followup rows defines the array
1, 1, 1, -3, -7, -19, -39, -83, -167, -339,..
0, 0, -4, -4, -12, -20, -44, -84, -172, -340,..
0, -4, 0, -8, -8, -24, -40, -88, -168, -344,..
-4, 4, -8, 0, -16, -16, -48, -80, -176, -336,..
8, -12, 8, -16, 0, -32, -32, -96, -160, -352, ..
The first two subdiagonals show essentially the powers of 2.
FORMULA
a(n) = 3+ 2*( (-1)^n-2^n )/3 = 3-A078008(n+1), n>0. [R. J. Mathar, Jun 30 2010]
a(n+2)-a(n)= A154589(n+2) = -2^(n+1), n>0.
a(n)= 2*a(n-1)+a(n-2)-2*a(n-3), n>3.
G.f.: (-x-2*x^2-4*x^3+1)/( (1-x)*(1-2*x)*(1+x) ).
a(n) + A173078(n) = 2^n.
a(n) - a(n-1) = -4*A001045(n-2) = -A097074(n-1), n>1.
CROSSREFS
Sequence in context: A222465 A239416 A281866 * A163572 A292775 A282024
KEYWORD
easy,sign
AUTHOR
Paul Curtz, Feb 10 2010
EXTENSIONS
Edited and extended by R. J. Mathar, Jun 30 2010
STATUS
approved