login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173117
Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 1, read by rows.
6
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 6, 14, 14, 6, 1, 1, 7, 20, 28, 20, 7, 1, 1, 8, 27, 49, 49, 27, 8, 1, 1, 9, 35, 76, 98, 76, 35, 9, 1, 1, 10, 44, 111, 175, 175, 111, 44, 10, 1, 1, 11, 54, 155, 286, 350, 286, 155, 54, 11, 1
OFFSET
0,5
FORMULA
T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 1.
Sum_{k=0..n} T(n, k, q) = [n=0] + q*[n=2] + Sum_{j=0..5} q^j*2^(n-2*j)*[n > 2*j] for q = 1. - G. C. Greubel, Apr 27 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 4, 4, 1;
1, 5, 8, 5, 1;
1, 6, 14, 14, 6, 1;
1, 7, 20, 28, 20, 7, 1;
1, 8, 27, 49, 49, 27, 8, 1;
1, 9, 35, 76, 98, 76, 35, 9, 1;
1, 10, 44, 111, 175, 175, 111, 44, 10, 1;
1, 11, 54, 155, 286, 350, 286, 155, 54, 11, 1;
MATHEMATICA
T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j, 0, 5}]];
Table[T[n, k, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k, q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021
CROSSREFS
Cf. A007318 (q=0), A072405 (q= -1), this sequence (q=1), A173118 (q=2), A173119 (q=3), A173120 (q= -4), A173122.
Sequence in context: A362036 A132735 A028262 * A050177 A013580 A147290
KEYWORD
nonn,tabl,easy,less
AUTHOR
Roger L. Bagula, Feb 10 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 27 2021
STATUS
approved