login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173116
a(n) = sinh(2*arcsinh(n))^2 = 4*n^2*(n^2 + 1).
19
0, 8, 80, 360, 1088, 2600, 5328, 9800, 16640, 26568, 40400, 59048, 83520, 114920, 154448, 203400, 263168, 335240, 421200, 522728, 641600, 779688, 938960, 1121480, 1329408, 1565000, 1830608, 2128680, 2461760, 2832488, 3243600
OFFSET
0,2
FORMULA
a(n) = 4*A071253(n) = 8*A037270(n).
G.f.: 8*x*(1 + 5*x + 5*x^2 + x^3)/(1 - x)^5. - Colin Barker, Jan 08 2012
E.g.f.: 4*x*(2 + 8*x + 6*x^2 + x^3)*exp(x). - Michael Somos, Jul 05 2018
a(n) = a(-n) = (2*n)^2 + (2*n^2)^2 = (2*n^2 + 1)^2 - 1. - Michael Somos, Jul 05 2018
From Amiram Eldar, Oct 25 2024: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/24 + (1-Pi*coth(Pi))/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/48 + (Pi*cosech(Pi)-1)/8. (End)
EXAMPLE
G.f. = 8*x + 80*x^2 + 360*x^3 + 1088*x^4 + 2600*x^5 + 5328*x^6 + 9800*x^7 + ... - Michael Somos, Jul 05 2018
MATHEMATICA
Table[4*n^2*(n^2 + 1), {n, 0, 30}] (* OR *)
Table[Round[N[Sinh[2 ArcSinh[n]]^2, 100]], {n, 0, 30}]
a[ n_] := TrigExpand @ Sinh[ 2 ArcSinh @ n]^2; (* Michael Somos, Jul 05 2018 *)
PROG
(Magma) [4*n^2*(n^2+1): n in [0..40]]; // Vincenzo Librandi, Jun 15 2011
(PARI) a(n)=4*n^2*(n^2+1) \\ Charles R Greathouse IV, Apr 17 2012
(PARI) a(n)=8*binomial(n^2+1, 2) \\ Charles R Greathouse IV, Apr 17 2012
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 10 2010
EXTENSIONS
Name corrected by Jianing Song, Nov 23 2018
STATUS
approved