login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100431
Bisection of A002417.
4
8, 80, 336, 960, 2200, 4368, 7840, 13056, 20520, 30800, 44528, 62400, 85176, 113680, 148800, 191488, 242760, 303696, 375440, 459200, 556248, 667920, 795616, 940800, 1105000, 1289808, 1496880, 1727936, 1984760, 2269200, 2583168, 2928640, 3307656, 3722320
OFFSET
0,1
FORMULA
a(n) = (4/3)*(2*n^4 + 11*n^3 + 22*n^2 + 19*n + 6). - Ralf Stephan, May 15 2007
G.f.: 8*(1 + 5*x + 2*x^2)/(1 - x)^5. - Ilya Gutkovskiy, Feb 24 2017
From G. C. Greubel, Apr 09 2023: (Start)
a(n) = (8/3)*binomial(n+2, 2)*binomial(2*n+3, 2).
a(n) = (8/3)*A000217(n+1)*A014105(n+1).
a(n) = 8*A108678(n).
a(n) = 4*A098077(n+1).
E.g.f.: (4/3)*(6 + 54*x + 69*x^2 + 23*x^3 + 2*x^4)*exp(x). (End)
MATHEMATICA
Table[4*(n+1)^2(n+2)(2n+3)/3, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *)
PROG
(Magma) [4*(n+1)^2*(n+2)*(2*n+3)/3: n in [0..60]]; // G. C. Greubel, Apr 09 2023
(SageMath) [4*(n+1)^2*(n+2)*(2*n+3)/3 for n in range(61)] # G. C. Greubel, Apr 09 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 20 2004
EXTENSIONS
More terms from Hugo Pfoertner, Nov 26 2004
STATUS
approved