login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100434
Expansion of g.f. (1+x)*(3+x)/(1+6*x^2+x^4).
1
3, 4, -17, -24, 99, 140, -577, -816, 3363, 4756, -19601, -27720, 114243, 161564, -665857, -941664, 3880899, 5488420, -22619537, -31988856, 131836323, 186444716, -768398401, -1086679440, 4478554083, 6333631924, -26102926097, -36915112104, 152139002499, 215157040700
OFFSET
0,1
COMMENTS
From Creighton Dement, Dec 18 2004: (Start)
Define the following sequences:
b(2n) = c(2n+1), b(2n+1) = c(2n); (c(n)) = (1, -3, -7, 17, 41, -99, -239, 577, 1393, -3363, -8119, 19601, 47321). This is the sequence A001333, apart from signs. Then c(2n) = ((-1)^n)*A002315(n) and c(2n+1) = ((-1)^(n+1))*A001541(n+1).
(d(n)) = (2, 4, -10, -24, 58, 140, -338, -816, 1970, 4756, -11482, -27720). This is A052542, apart from signs. Also, d(2n) = ((-1)^n)*A075870(n), d(2n+1) = ((-1)^n)*A005319(n+1).
(e(n)) = (1, -1, -5, 5, 29, -29, -169, 169, 985, -985, -5741, 5741, 33461, -33461), e(2n) = d(2n)/2, e(2n+1) = - d(2n)/2.
(f(n)) = (2, 2, -12, -12, 70, 70, -408, -408, 2378, 2378, -13860, -13860, ) f(2n) = f(2n+1) = d(2n+1)/2.
(g(n)) = (0, -3, 0, 17, 0, -99, 0, 577, 0, -3363, 0, 19601, 0, -114243, 0, 665857), g(2n) = 0, g(2n+1) = c(2n+1).
Then a(2n) = - c(2n+1), a(2n+1) = d(2n+1) and we have the following conjectures: c(n) + d(n) = e(n) + f(n) = g(n) + a(n); c(n) + d(n) = b(n). In other words, the sequences (c(n) + d(n)) = (e(n) + f(n)) = (g(n) + h(n)) all represent the sequence c with even- and odd-indexed terms reversed. (End)
FORMULA
a(n) = (-1)^floor(n/2)*A000034(n)*A126354(n+3). - R. J. Mathar, Mar 08 2009
a(n) = -2*a(n-1) - 3*a(n-2) if n is even; a(n) = (4*a(n-1) - a(n-2))/3 if n is odd. - R. J. Mathar, Jun 18 2014
MATHEMATICA
LinearRecurrence[{0, -6, 0, -1}, {3, 4, -17, -24}, 41] (* G. C. Greubel, Apr 09 2023 *)
PROG
(Magma) I:=[3, 4, -17, -24]; [n le 4 select I[n] else -6*Self(n-2)-Self(n-4): n in [1..40]]; // G. C. Greubel, Apr 09 2023
(SageMath)
@CachedFunction
def a(n): # a = A100434
if (n<4): return (3, 4, -17, -24)[n]
else: return -6*a(n-2) - a(n-4)
[a(n) for n in range(41)] # G. C. Greubel, Apr 09 2023
CROSSREFS
Bisections give A001541, A005319.
Sequence in context: A100560 A025534 A082000 * A096876 A257330 A115388
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 21 2004, suggested by correspondence from Creighton Dement
STATUS
approved