login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. (1+x)*(3+x)/(1+6*x^2+x^4).
1

%I #27 Apr 09 2023 11:50:02

%S 3,4,-17,-24,99,140,-577,-816,3363,4756,-19601,-27720,114243,161564,

%T -665857,-941664,3880899,5488420,-22619537,-31988856,131836323,

%U 186444716,-768398401,-1086679440,4478554083,6333631924,-26102926097,-36915112104,152139002499,215157040700

%N Expansion of g.f. (1+x)*(3+x)/(1+6*x^2+x^4).

%C From _Creighton Dement_, Dec 18 2004: (Start)

%C Define the following sequences:

%C b(2n) = c(2n+1), b(2n+1) = c(2n); (c(n)) = (1, -3, -7, 17, 41, -99, -239, 577, 1393, -3363, -8119, 19601, 47321). This is the sequence A001333, apart from signs. Then c(2n) = ((-1)^n)*A002315(n) and c(2n+1) = ((-1)^(n+1))*A001541(n+1).

%C (d(n)) = (2, 4, -10, -24, 58, 140, -338, -816, 1970, 4756, -11482, -27720). This is A052542, apart from signs. Also, d(2n) = ((-1)^n)*A075870(n), d(2n+1) = ((-1)^n)*A005319(n+1).

%C (e(n)) = (1, -1, -5, 5, 29, -29, -169, 169, 985, -985, -5741, 5741, 33461, -33461), e(2n) = d(2n)/2, e(2n+1) = - d(2n)/2.

%C (f(n)) = (2, 2, -12, -12, 70, 70, -408, -408, 2378, 2378, -13860, -13860, ) f(2n) = f(2n+1) = d(2n+1)/2.

%C (g(n)) = (0, -3, 0, 17, 0, -99, 0, 577, 0, -3363, 0, 19601, 0, -114243, 0, 665857), g(2n) = 0, g(2n+1) = c(2n+1).

%C Then a(2n) = - c(2n+1), a(2n+1) = d(2n+1) and we have the following conjectures: c(n) + d(n) = e(n) + f(n) = g(n) + a(n); c(n) + d(n) = b(n). In other words, the sequences (c(n) + d(n)) = (e(n) + f(n)) = (g(n) + h(n)) all represent the sequence c with even- and odd-indexed terms reversed. (End)

%H G. C. Greubel, <a href="/A100434/b100434.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,-6,0,-1).

%F a(n) = (-1)^floor(n/2)*A000034(n)*A126354(n+3). - _R. J. Mathar_, Mar 08 2009

%F a(n) = -2*a(n-1) - 3*a(n-2) if n is even; a(n) = (4*a(n-1) - a(n-2))/3 if n is odd. - _R. J. Mathar_, Jun 18 2014

%t LinearRecurrence[{0,-6,0,-1}, {3,4,-17,-24}, 41] (* _G. C. Greubel_, Apr 09 2023 *)

%o (Magma) I:=[3,4,-17,-24]; [n le 4 select I[n] else -6*Self(n-2)-Self(n-4): n in [1..40]]; // _G. C. Greubel_, Apr 09 2023

%o (SageMath)

%o @CachedFunction

%o def a(n): # a = A100434

%o if (n<4): return (3,4,-17,-24)[n]

%o else: return -6*a(n-2) - a(n-4)

%o [a(n) for n in range(41)] # _G. C. Greubel_, Apr 09 2023

%Y Bisections give A001541, A005319.

%Y Cf. A000034, A001333, A002315, A052542, A075870, A126354.

%K sign,easy

%O 0,1

%A _N. J. A. Sloane_, Nov 21 2004, suggested by correspondence from _Creighton Dement_