login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100435
Number of distinct products i*j*k for 1 <= i <= j < k <= n.
6
0, 1, 4, 9, 18, 26, 44, 57, 76, 93, 135, 153, 212, 245, 282, 317, 414, 452, 575, 624, 690, 759, 935, 986, 1103, 1196, 1297, 1378, 1645, 1716, 2024, 2136, 2279, 2427, 2597, 2687, 3110, 3292, 3483, 3606, 4123, 4262, 4837, 5026, 5227, 5485, 6168, 6318, 6725
OFFSET
1,3
MAPLE
f:=proc(n) local i, j, k, t1; t1:={}; for i from 1 to n-1 do for j from i to n-1 do for k from j+1 to n do t1:={op(t1), i*j*k}; od: od: od: t1:=convert(t1, list); nops(t1); end;
MATHEMATICA
f[n_] := Length[ Union[ Flatten[ Table[ i*j*k, {i, n}, {j, i, n}, {k, j + 1, n}] ]]]; Table[ f[n], {n, 49}] (* Robert G. Wilson v, Dec 14 2004 *)
PROG
(Python)
def A100435(n): return len({i*j*k for i in range(1, n+1) for j in range(1, i) for k in range(1, j+1)}) # Chai Wah Wu, Oct 16 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 21 2004
EXTENSIONS
More terms from Robert G. Wilson v, Dec 14 2004
STATUS
approved