login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027430
Number of distinct products ijk with 1 <= i<j<k <= n.
27
0, 0, 1, 4, 10, 16, 29, 42, 60, 75, 111, 126, 177, 206, 238, 274, 361, 396, 507, 554, 613, 677, 838, 883, 1004, 1092, 1198, 1277, 1529, 1590, 1881, 1998, 2133, 2275, 2432, 2518, 2921, 3096, 3278, 3391, 3884, 4014, 4563, 4750, 4938, 5186, 5840, 5987, 6422, 6652
OFFSET
1,4
REFERENCES
Amarnath Murthy, Generalization of partition function introducing Smarandache Factor Partitions, Smarandache Notions Journal, 1-2-3, Vol. 11, 2000.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..700 (first 200 terms by T. D. Noe)
David A. Corneth, Pari program
FORMULA
a(n) = A027429(n)-1. - T. D. Noe, Jan 16 2007
a(n) <= A000292(n - 2). - David A. Corneth, Jul 31 2018
MATHEMATICA
nn = 50;
prod = Table[0, {1 + nn^3}];
a[1] = 0;
a[n_] := (Do[prod[[1 + i*j*k]] = 1, {i, 0, n}, {j, i+1, n}, {k, j+1, n}]; Count[Take[prod, 1 + n^3], 1] - 1);
Array[a, nn] (* Jean-François Alcover, Jul 31 2018, after T. D. Noe *)
PROG
(Haskell)
import Data.List (nub)
a027430 n = length $ nub [i*j*k | k<-[3..n], j<-[2..k-1], i<-[1..j-1]]
-- Reinhard Zumkeller, Jan 01 2012
(PARI) See PARI link \\ David A. Corneth, Jul 31 2018
(Python)
def A027430(n): return len({i*j*k for i in range(1, n+1) for j in range(1, i) for k in range(1, j)}) # Chai Wah Wu, Oct 16 2023
CROSSREFS
Number of terms in row n of A083507.
Sequence in context: A167346 A307274 A378708 * A298031 A027425 A024992
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected by David Wasserman, Nov 18 2004
STATUS
approved